The EORTC QLU-C10D – development and investigation of general population utility norms for Canada, France, Germany, Italy, Poland and the U.K.

Micha Johannes Pilz, BA, Sandra Nolte, PhD, Gregor Liegl, PhD, Madeleine King, PhD, Prof., Richard Norman, PhD, Assoc. Prof., Helen McTaggart-Cowan, PhD, Andrew Bottomley, PhD, Matthias Rose, PhD, Prof., Georg Kemmler, PhD, Bernhard Holzner, PhD, Prof., Eva Maria Gamper, PhD, on behalf of the EORTC Quality of Life Group

PII: S1098-3015(22)04783-0
DOI: https://doi.org/10.1016/j.jval.2022.12.009
Reference: JVAL 3717

To appear in: Value in Health

Received Date: 10 May 2022
Revised Date: 11 December 2022
Accepted Date: 16 December 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022, International Society for Pharmacoeconomics and Outcomes Research, Inc. Published by Elsevier Inc.
The EORTC QLU-C10D – development and investigation of general population utility norms for Canada, France, Germany, Italy, Poland and the U.K.

EORTC QLU-C10D - general population utility norms [see full title above]

Micha Johannes Pilz BA¹, Sandra Nolte PhD², Gregor Liegl PhD², Prof. Madeleine King PhD³, Assoc. Prof. Richard Norman PhD⁴, Helen McTaggart-Cowan PhD⁵, Andrew Bottomley PhD⁶, Prof. Matthias Rose PhD², Georg Kemmler PhD⁷, Prof. Bernhard Holzner PhD¹,¹⁷, Eva Maria Gamper PhD⁸ on behalf of the EORTC Quality of Life Group

¹ Medical University Innsbruck, University Hospital of Innsbruck Psychiatry II, Innsbruck, Austria.
² Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychosomatic Medicine, Berlin, Germany.
³ School of Psychology, University of Sydney, Camperdown, New South Wales, Australia.
⁴ School of Population Health, Curtin University, Perth, Western Australia, Australia.
⁵ BC Cancer Research Institute, Vancouver, British Columbia, Canada.
⁶ European Organisation for Research and Treatment of Cancer, Brussels, Belgium.
⁷ Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Innsbruck, Austria.
⁸ Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.

Corresponding Author:
Eva-Maria Gamper, PhD
Department of Nuclear Medicine,
Medical University of Innsbruck,
6020 Innsbruck, Austria
eva-maria.gamper@i-med.ac.at
+43 504 83736
Funding/Support:
This work was funded by a research grant of the EORTC (grant #12/2016).

Precis:
General population utility norms for the health utility instrument EORTC QLU-C10D were estimated for six countries and showed age-, sex-, and country specific patterns.

Acknowledgement:
N/A

Word count:
2514

Number of pages:
21

Number of figures:
2

Number of tables:
4

Appendix:
Pages: 3
Figures: 2
Tables: 1
Author Contributions:
Concept and design: Pilz, Nolte, King, Holzner, Gamper
Acquisition of data: Nolte, Liegl, McTaggart-Cowan, Rose
Analysis and interpretation of data: Pilz, Nolte, King, Norman, Kemmler, Gamper
Drafting of the manuscript: Pilz, Nolte, Norman, McTaggart-Cowan, Bottomley, Gamper
Critical revision of the paper for important intellectual content: Pilz, Nolte, Liegl, King, Norman, McTaggart-Cowan, Bottomley, Rose, Kemmler, Holzner, Gamper
Statistical analysis: Pilz, Kemmler, Gamper
Provision of study materials or patients: Nolte, Liegl, Rose
Obtaining funding: Nolte, Bottomley, Rose, Gamper
Administrative, technical, or logistic support: Holzner
Supervision: Gamper

Conflict of Interest Disclosures:
Dr Nolte reported receiving grants from EORTC Quality of Life Group, during the conduct of the study; personal fees from ICON plc and Union Chimique Belge Biosciences GmbH, outside the submitted work. Dr Liegl reported receiving personal fees from IQTIG, outside the submitted work. Dr Gamper reported receiving grants from EORTC grant 1622, during the conduct of the study. Dr Norman is an editor for Value in Health and had no role in the peer-review process of this article. No other disclosures were reported.

Funding/Support:
This work was funded by a research grant of the EORTC (grant#12/2016).

Role of the Funder/Sponsor:
The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Acknowledgment:
N/A
Abstract

Objectives

The EORTC QLU-C10D is a cancer-specific preference-based measure, providing health utilities for use in economic evaluations derived from the widely used health-related quality of life measure, EORTC QLQ-C30. Several EORTC QLU-C10D country-specific value sets are available. This article aims to provide EORTC QLU-C10D general population utility norms for Canada, France, Germany, Italy, Poland and the UK, to aid interpretability of obtained utilities in these countries.

Methods

Data were collected in aforementioned countries via a quota-sampled, cross sectional online survey (n=100/age-sex group; n=approximately 1,000/country). Participants were asked to complete the EORTC QLQ-C30 and provide sociodemographic data. Country-specific utility norms were calculated using the respective country tariff on the country’s EORTC QLQ-C30 data after weighting to achieve population representativeness for age and sex. Norm values are provided as means (standard deviations) by country, age and sex groups. Tukey’s multiple comparison test investigated mean differences between countries. The impact of country, age and sex on utility values was investigated with a multiple linear regression model.

Results

Country-specific mean utilities range from 0.724 (UK) to 0.843 (Italy). Country-, sex-, and age-specific mean utilities range from 0.664 for 30-39-year-old male Canadians to 0.899 for >70-year-old male Italians. Utilities were lower in females in 4/6 countries, and the impact of age differed between countries. Independent of the impact of age and sex, between-country differences were found (p-values ≤0.05).

Conclusion
Results showed a varying impact of age and sex on EORTC QLU-C10D utilities and significant between-country differences. Using national utility norms and utility decrements is recommended.

Highlights

- The EORTC QLU-C10D is a recently developed cancer-specific preference-based measure, designed to facilitate health economic evaluations in the cancer patient population.
- The country-specific general population utility norms provide an adequate baseline in health economic evaluations if other control groups are missing.
- Statistically significant country differences in general population utility norms, independent of the influence of national age and sex distributions, suggest the use of country specific scoring algorithms on national data where applicable.
Introduction

Preference-based measures (PBM) such as the EQ-5D \(^1\) and the SF-6D \(^2\) provide health state utility values (HSUVs) which express the value a certain population (usually the general population of a country) assigns to certain health states. The calculation of HSUVs requires country-specific preference-based scoring algorithms, and HSUVs are then used to calculate quality-adjusted life years (QALYs), a metric that combines survival time and quality of life, for use in cost–utility analyses (CUA). CUA compares health interventions using incremental cost-effectiveness ratios, a ratio of the difference in treatment costs and the difference in treatment effect expressed in QALYs \(^3\).

The European Organisation for Research and Treatment of Cancer Quality of Life Utility-Core 10 Dimensions (EORTC QLU-C10D) is a novel cancer-specific PBM \(^4,5\). It provides a preference-based scoring algorithm for the widely used health-related quality of life (HRQOL) profile measure EORTC QLQ-C30 \(^6\) and hence allows the calculation of HSUVs from EORTC QLQ-C30 data. In recent years EORTC QLU-C10D value sets have been provided for a range of countries in a joint endeavour of international research groups such as the EORTC Quality of Life Group (QLG) and the Multi-attribute Utility in Cancer (MAUCa) Consortium. Given that the EORTC QLQ-C30 is the most widely used HRQOL questionnaire in cancer clinical research \(^7,8\), the EORTC QLU-C10D can be expected to become a frequently applied research tool in oncology.

The availability of utility norms increases the applicability and interpretability of PBM by enabling normative comparisons across specific populations or patient groups \(^9\). Furthermore, if normative estimates are provided by age and sex groups, these can be used in health economic evaluations to guard against confounding by these variables when comparing groups with different age- and sex-distributions. Utility norms can provide an adequate baseline in economic modelling and a comparator for survivorship studies. Therefore the provision of
general population utility norms of PBM is suggested \(^{10-12}\). General population utility norms allow the comparison of HSUVs between cancer patients and a comparative group reflecting a real-world population that includes people with various (chronic) diseases, rather than a hypothetically completely healthy population. This is a valid comparator, as in a best case treatment scenario, a cancer patient population will not return to a perfect state of health but will still include health impairments with the same prevalence as the general population. Additionally, utility norms can facilitate comparisons across countries, regions and cultures \(^{13}\), enabling the detection of health inequities in subgroups of the population \(^{12}\). General population utility norms are currently available for commonly applied multi-attribute utility instruments, such as the EQ-5D \(^{14}\) and the SF-6D \(^{11,15}\).

To support the interpretability of HSUVs obtained by the EORTC QLU-C10D, the aim of this paper is to provide general population utility norms for Canada, France, Germany, Italy, Poland and the UK, for which EORTC QLU-C10D value sets have recently become available \(^{16-20}\). Additionally, we investigate HSUV age and sex differences within and between countries.

Methods

Instruments:

EORTC QLQ-C30 and EORTC QLU-C10D

The EORTC QLU-C10D is a PBM designed for use in health economic evaluations. It constitutes a scoring algorithm that is applied to a health state description system based on the widely used HRQOL profile measure EORTC QLQ-C30. The EORTC QLQ-C30 shows robust psychometric properties \(^{6}\). Additionally its reliability and validity for the cancer patient population have been extensively investigated and are well established \(^{6,21}\). In the development of the EORTC QLU-C10D, the EORTC QLQ-C30’s content and construction were subjected to thorough investigation to build a health state classification system suitable and relevant for a cancer-specific PBM \(^{4}\).
Social Functioning, Emotional Functioning, Pain, Fatigue, Sleep Disturbance, Appetite, Nausea and Bowel Problems. Each dimension can take on four levels, so the EORTC QLQ-C10D describes over a million possible health states ($4^{10} = 1,048,576$). There is a standard protocol in place for the elicitation of preferences which includes a web-based discrete choice experiment (DCE). So far value sets have been developed for Australia, Austria, Canada, France, Germany, Italy, The Netherlands, Poland, Spain, the UK, and the USA. Further valuation studies are currently conducted in China, Denmark, Hong-Kong, Japan and Singapore.

Utility Norm data collection

For our analyses, we drew on data collected in March/April 2017 within an EORTC project to develop multinational norm data for both the EORTC computerised adaptive test (CAT), the EORTC CAT Core, and the EORTC QLQ-C30. In the respective project general population norm data were obtained for 13 European countries, Canada and the United States. Data were collected via the panel research company GfK SE (www.gfk.com) that specialises in international online surveys. These online panels are representative for a range of variables, such as age, sex, education, region, size of the city, household size, etc. To ensure sufficiently large samples for age and sex subgroups, samples were stratified by sex and a total of five age groups in each country, with n = 100 per stratum, resulting in a total sample of n = 1000 per country. As the quota-sampling procedure assured a balanced distribution of age and sex groups, the calculation of the population norms data was weighted according to population distribution statistics of age and sex to achieve representativeness for these variables for the respective countries. Additionally, information on employment status, education, marital status and comorbidities were collected.
Statistical analyses

Since the EORTC QLU-C10D consists of items taken from the EORTC QLQ-C30, EORTC QLU-C10D utility norms can be constructed based on the recently published general population norm data for the EORTC QLQ-C30 described above [22]. EORTC QLU-C10D utility norms were calculated from QLQ-C30 data using the respective national utility decrements for Canada 18, France 19, Germany 17, Italy 16, Poland 16 and the UK 20, as these were already available at the time. Sample characteristics are presented as frequencies, means and standard deviations (SD). General population utility norms are presented as means and SD separately for countries, age and sex groups. Analyses of variance were used to investigate the significance of mean differences across countries with Tukey’s method.

To investigate the joint impact of country, age and sex on EORTC QLU-C10D utility values, we fitted a multiple linear regression model including all variables as fixed effects including interaction terms of country*sex and country*age. Age was set so that constant reflects 18 years as the normative samples do not comprise younger respondents. This means that in the regression formula the age of the respondent at hand needs to be subtracted by 18. Based on the regression model we provide a formula to calculate country-, sex-, and age-specific general population utility norms. For all analyses, we used IBM SPSS Statistics, version 25.

Results

Sociodemographic Analysis

The data sets of the six countries comprised between 1,001 (France) and 1,036 (Italy) respondents. In the Canadian sample, 2.7% reported to have less than compulsory education while only 11.0% possessed a postgraduate degree. In contrast, in the French sample, only 0.1% had less than compulsory education and 41.9% held a postgraduate degree. Unemployment ranged from 3.3% in Germany to 9.6% in Italy. The highest proportions of singles were found in Canada with 28.1%, while France, with 65.0%, had the highest
percentage of respondents married or in a steady relationship. The surveyed population in France showed the lowest burden of pre-existing ailments (49.8% of its respondents), while in Italy 57.9% of the sample indicated that they had at least one pre-existing health condition.

Insert Table 1

EORTC QLU-C10D utility norm data table for countries

Table 2 provides mean utility norms and SD separately for each country. Overall, the highest utility norm across countries was observed in Italy (u=0.843; SD=0.182) and the lowest in the UK (u=0.724; SD=0.257). Significant differences in country-specific EORTC QLU-C10D utility values were observed between most countries (Tukey’s p-values ≤0.05), independent of the impact of age and sex. Further details are provided in the Supplementary Table S1.

Insert Table 2

Insert Figure 1

EORTC QLU-C10D utility norm data table for countries, age and sex groups

To provide comprehensive utility norms across all countries, age and sex groups, table 3 displays all subgroup mean utility norms that serve as population norm reference values for the EORTC QLU-C10D. The pattern of mean utility norms by age and sex differed somewhat across countries (Figure 2). For Canada the subgroup with the lowest mean utility norm is 30-39-year-old males (u=0.664, SD=0.308) while 18-29-year-old men and men older than 70 years have the highest mean utility norm with 0.779 (SD=0.197). In Germany, females older than 70 years possess on average the lowest utility norm (u=0.684; SD=0.238). In contrast, 18-29-year-old female Germans have on average 0.830 (SD=0.121), the highest utility norm. A more balanced picture is displayed in France, where 18-29-year-old females (u=0.733, SD=0.281) have the lowest utility norm, and 60-69-year-old males (u=0.804; SD=0.208) display the
highest health utility norm. Overall, the Italian population shows the highest utility norms, where the range starts at 0.796 (SD=0.231) for 30-39-year-old male Italians and reaches 0.899 (SD=0.128) for male Italians older than 70 years. In Poland, the female population older than 70 years shows, with 0.759 (SD=0.198) mean utility, the lowest norm. In contrast, males aged 18-29 years (u=0.837, SD=0.175) possess the highest utility norms. In the UK, the country with the overall lowest utility norms, this subgroup analysis shows that 18-29-year-old males (u=0.674; SD=0.308) have the poorest health state utility norms, while males older than 70 years have the highest utility norms with 0.787 (SD=0.183).

Regression Models

To allow ad hoc calculation of country-, sex- and age-specific utility norms for the EORTC QLU-C10D a linear regression model is provided. The regression table shows a significant effect of sex on the EORTC QLU-C10D utility norms for Germany, France, Italy and Poland, where the female population consistently shows lower utility values compared to the male population. In contrast, for Canada and the UK there is no significant effect of sex. In most countries with significant influence of age, utility values increase with age. Only in Germany is an increase in age is significantly linked to decreasing utility values. The regression estimation in Poland does not show any relevant age effect. An exemplary calculation is included in the supplementary material.

\[U_{ref} = C \pm \beta_1 \ast (age - 18) \pm \beta_2 \ast sex\ code \]
Discussion

The EORTC QLU-C10D is a cancer-specific preference-based utility instrument that is backward compatible with the EORTC QLQ-C30. This allows the retrospective calculation of utility values from already collected EORTC QLQ-C30 data.

In this paper we have provided the first EORTC QLU-C10D country-specific utility norms. We believe that these will be a practical tool for the interpretation of utility values derived from this fairly new, yet in future presumably frequently used, PBM. They may be of special importance in economic evaluations when no other control groups are available (e.g. due to low prevalence rates of a disease) or when the investigated population is expected to return to a ‘normal’, rather than to a perfect, state of health. This approach of interpreting diseasespecific HRQOL data is commonly suggested by norm data publications for non-preference based measures such as the EORTC QLQ-C30.

When using these utility norms for health economic evaluations, the composition of the cancer patient sample(s) with regard to age and sex should be considered.

The general population utility norms were found to significantly differ between countries. Various factors may be driving these differences: different sociodemographic structures (e.g. employment ratios, levels of education), differing cultural attitudes towards health and/or the willingness to trade off lifetime, and different cultural interpretations of the wording of health descriptions. However, the extent of the contribution of each of these factors to between-country differences is mostly unknown. This highlights the potential impact of applying QLU-C10D value sets from one country to QLQ-C30 data from another country. However, the standard procedure when using international data sets in economic evaluations is to apply the utility weights of the decision maker’s country as these represent the respective societal values for those decision makers. Nevertheless, there are still many unknown factors and lack of evidence, and therefore the working hypothesis must be that, if available, country-specific
preferences and data from that same country are the best match, i.e. they provide the ‘truest’ values that can be obtained, challenging the afore mentioned practice. Little is known about the impact of language and cultural reporting behaviours in combination with providing health preferences in the valuation of a PBM. In the specific case of the EORTC QLU-C10D, the standardised procedure when translating the EORTC QLQ-C30 into various languages 47 and the standardised methodology used for valuation studies in different countries 5 is likely to avoid a range of issues when it comes to translation and can minimise variability of results across countries as a result of valuation methodology. There are now numerous country-specific value sets available or in development for the EORTC QLU-C10D, but still many more countries that do not yet have value sets, in which case the choice of most appropriate value set must be faced.

In addition to between-country differences, some significant age and sex effects were found, supporting the notion that it is important to carefully choose an adequate reference group when interpreting health economic data. Where significant, the female sex showed a negative impact on EORTC QLU-C10D utility norms reflecting the sex effect in the source QLQ-C30 data. Notably, the effect of age on the EORTC QLU-C10D utility norms differed across the inspected countries. For example, the German utility norms decreased with age, while the Italian utility norms increased with age. The exceptionally high utility norms for older Italians might raise concerns about the representativeness of online panels for older age groups, but it is unclear why such a selection bias would occur in one country and not others. The survey company GfK SE only guarantees representativeness for the general population with internet access. Liu et al showed that the PROMIS internet panel data were representative of the United States general population in terms of health status provided that they were weighted appropriately 48; we weighted our data to represent national age and sex distributions. Further, the primary study behind this publication extensively discussed the congruence between the
sociodemographic characteristics of the study sample and the European general population
\(^{27}\), whereby the unemployment data \(^ {49}\), the marital statistics \(^ {50}\) and the prevalence self-reported comorbidities were largely in line with external sources \(^ {51-53}\). The age patterns observed in our results partly align with the EQ-5D general population utility norms, assessed by personal computer-based home interviews. For example, the age pattern for Germany was similar for both EQ-5D and QLU-C10D; in contrast, for France and Italy the EQ-5D general population utility norms showed lower utility values with increasing age, which is deviating from our analysis of the EORTC QLU-C10D utility norms \(^ {14}\). A different sampling procedure (address registries and hospital visitor face-to-face interviews) was shown by Golicki et al. to establish Polish general population norms for the EQ-5D \(^ {54-56}\). They reported a decrease in utility values of the Polish EQ-5D population norms which is in contrast with our findings. Future research is necessary to explore whether these differences can be explained by the different sampling procedures, different approaches to establish scoring algorithms or the differing content of the PBM.

A limitation of this study is the potential selection bias towards computer-literate and higher educated respondents as a result of web-based recruitment and data collection. In each of the EORTC QLU-C10D valuations studies, samples obtained via online panels have consistently over-represented educated people and in some countries also married people, people in poor mental health and people in good overall health \(^ {16-20,22-25}\). We were unable to assess this in the current analysis because such sociodemographic variables were not assessed in a way comparable to country-specific sociodemographic normative data as they were in the valuation studies. This selection bias may especially be an issue for the elderly population where those who are able to operate a computer and are familiar with online surveys may be disproportionately in better health states \(^ {57}\); this was found in the Australian EORTC QLQ-C30 population norm study \(^ {33}\).
A strength of the utility norms presented here is that standardised procedures of recruitment and data collection have been in place across all included countries, not only for the data sets used for the calculation of the utility norms, but also in the valuation studies of the EORTC QLU-C10D in these countries. Therefore, not only was statistical power excellent, but we can also rule out that methodological variability impacted our results.

Conclusion

These utility norms are a solid basis for interpretation and comparison of cancer-specific HSUVs obtained from the EORTC QLU-C10D for six countries. When using these utility norms for that purpose, the composition of the cancer patient sample(s) with regard to age and sex should be considered and respective utility norms calculated by using either the table or, for a more accurate comparison of diversified samples, the regression formula we have provided.
References

18. McTaggart-Cowan H, King MT, Norman R, et al. The EORTC QLU-C10D: The Canadian Valuation Study and Algorithm to Derive Cancer-Specific Utilities From the EORTC QLQ-

Figures

Fig. 1: Countries’ mean EORTC QLU-C10D values, adjusted for age and sex
Fig. 2: Mean utility values across countries, age and sex
Tables

Table 1: Sociodemographic data across five European countries and Canada (weighted to represent national age and sex distributions)

<table>
<thead>
<tr>
<th></th>
<th>Canada (N=1004)</th>
<th>Germany (N=1006)</th>
<th>France (N=1001)</th>
<th>Italy (N=1036)</th>
<th>Poland (N=1024)</th>
<th>UK (N=1026)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.88 (17.1)</td>
<td>49.18 (17.2)</td>
<td>47.88 (17.0)</td>
<td>49.33 (16.9)</td>
<td>45.61 (17.1)</td>
<td>47.03 (17.6)</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>495 (49.3%)</td>
<td>492 (48.9%)</td>
<td>487 (48.7%)</td>
<td>500 (48.2%)</td>
<td>489 (47.8%)</td>
<td>502 (48.9%)</td>
</tr>
<tr>
<td>Female</td>
<td>509 (50.7%)</td>
<td>514 (51.1%)</td>
<td>514 (51.3%)</td>
<td>536 (51.8%)</td>
<td>535 (52.2%)</td>
<td>524 (51.1%)</td>
</tr>
<tr>
<td>Education (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than compulsory</td>
<td>27 (2.7%)</td>
<td>1 (0.1%)</td>
<td>1 (0.1%)</td>
<td>0 (0%)</td>
<td>8 (0.8%)</td>
<td>15 (1.5%)</td>
</tr>
<tr>
<td>Compulsory</td>
<td>220 (21.9%)</td>
<td>100 (10.0%)</td>
<td>51 (5.1%)</td>
<td>16 (1.6%)</td>
<td>40 (3.9%)</td>
<td>237 (23.1%)</td>
</tr>
<tr>
<td>Some post compulsory</td>
<td>0 (0%)</td>
<td>370 (36.7%)</td>
<td>135 (13.5%)</td>
<td>113 (10.9%)</td>
<td>109 (10.6%)</td>
<td>188 (18.3%)</td>
</tr>
<tr>
<td>Post compulsory below university</td>
<td>230 (22.9%)</td>
<td>187 (18.6%)</td>
<td>112 (11.2%)</td>
<td>564 (54.4%)</td>
<td>359 (35.0%)</td>
<td>220 (21.4%)</td>
</tr>
<tr>
<td>University degree</td>
<td>407 (40.5%)</td>
<td>131 (13.0%)</td>
<td>263 (26.3%)</td>
<td>292 (28.2%)</td>
<td>147 (14.4%)</td>
<td>282 (27.5%)</td>
</tr>
<tr>
<td>Postgraduate degree</td>
<td>110 (11.0%)</td>
<td>211 (21.0%)</td>
<td>419 (41.9%)</td>
<td>49 (4.7%)</td>
<td>326 (31.9%)</td>
<td>72 (7.0%)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>10 (1.0%)</td>
<td>7 (0.7%)</td>
<td>19 (1.9%)</td>
<td>2 (0.2%)</td>
<td>34 (3.3%)</td>
<td>13 (1.3%)</td>
</tr>
<tr>
<td>Employment (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed full-time</td>
<td>422 (42.1%)</td>
<td>400 (39.7%)</td>
<td>437 (43.7%)</td>
<td>294 (28.4%)</td>
<td>475 (46.4%)</td>
<td>361 (35.2%)</td>
</tr>
<tr>
<td>Employed part-time</td>
<td>82 (8.2%)</td>
<td>104 (10.3%)</td>
<td>73 (7.3%)</td>
<td>78 (7.5%)</td>
<td>51 (5.0%)</td>
<td>105 (10.3%)</td>
</tr>
<tr>
<td>Homemaker</td>
<td>57 (5.7%)</td>
<td>43 (4.3%)</td>
<td>34 (3.4%)</td>
<td>100 (9.6%)</td>
<td>30 (3.0%)</td>
<td>90 (8.8%)</td>
</tr>
<tr>
<td>Category</td>
<td>35 (3.5%)</td>
<td>61 (6.1%)</td>
<td>50 (5.0%)</td>
<td>88 (8.5%)</td>
<td>63 (6.1%)</td>
<td>43 (4.2%)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Student</td>
<td>35 (5.5%)</td>
<td>34 (3.3%)</td>
<td>80 (8.0%)</td>
<td>100 (9.6%)</td>
<td>39 (3.8%)</td>
<td>89 (8.6%)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>257 (25.6%)</td>
<td>276 (27.4%)</td>
<td>283 (28.3%)</td>
<td>240 (23.2%)</td>
<td>249 (24.3%)</td>
<td>242 (23.6%)</td>
</tr>
<tr>
<td>Retired</td>
<td>59 (5.9%)</td>
<td>53 (5.3%)</td>
<td>25 (2.5%)</td>
<td>124 (12.0%)</td>
<td>66 (6.4%)</td>
<td>64 (6.3%)</td>
</tr>
<tr>
<td>Self-employed</td>
<td>28 (2.8%)</td>
<td>28 (2.8%)</td>
<td>12 (1.2%)</td>
<td>10 (1.0%)</td>
<td>25 (2.4%)</td>
<td>29 (2.8%)</td>
</tr>
<tr>
<td>Prefer not to answer/ Missing</td>
<td>8 (0.8%)</td>
<td>8 (0.8%)</td>
<td>7 (0.7%)</td>
<td>2 (0.2%)</td>
<td>27 (2.6%)</td>
<td>3 (0.2%)</td>
</tr>
<tr>
<td>Relationship (%)</td>
<td>282 (28.1%)</td>
<td>230 (22.9%)</td>
<td>208 (20.8%)</td>
<td>261 (25.2%)</td>
<td>216 (21.1%)</td>
<td>255 (24.8%)</td>
</tr>
<tr>
<td>Single / not in a steady relationship</td>
<td>585 (58.2%)</td>
<td>608 (60.4%)</td>
<td>651 (65.0%)</td>
<td>658 (63.5%)</td>
<td>609 (59.5%)</td>
<td>644 (62.8%)</td>
</tr>
<tr>
<td>Married / in a steady relationship</td>
<td>129 (12.8%)</td>
<td>158 (15.7%)</td>
<td>128 (12.8%)</td>
<td>105 (10.1%)</td>
<td>165 (16.1%)</td>
<td>123 (12.0%)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>8 (0.8%)</td>
<td>9 (0.9%)</td>
<td>14 (1.4%)</td>
<td>12 (1.1%)</td>
<td>34 (3.3%)</td>
<td>5 (0.4%)</td>
</tr>
<tr>
<td>Health (%)</td>
<td>396 (36.8%)</td>
<td>384 (38.2%)</td>
<td>455 (45.4%)</td>
<td>389 (37.5%)</td>
<td>367 (35.8%)</td>
<td>399 (38.9%)</td>
</tr>
<tr>
<td>No health condition selected</td>
<td>580 (57.7%)</td>
<td>542 (53.9%)</td>
<td>498 (49.8%)</td>
<td>600 (57.9%)</td>
<td>590 (57.6%)</td>
<td>588 (57.3%)</td>
</tr>
<tr>
<td>At least one health condition selected</td>
<td>40 (4.0%)</td>
<td>77 (7.7%)</td>
<td>39 (3.9%)</td>
<td>42 (4.1%)</td>
<td>59 (5.8%)</td>
<td>36 (3.5%)</td>
</tr>
<tr>
<td>Missing as ticked 'prefer not to answer'</td>
<td>15 (1.5%)</td>
<td>2 (0.2%)</td>
<td>9 (0.9%)</td>
<td>5 (0.5%)</td>
<td>8 (0.8%)</td>
<td>3 (0.3%)</td>
</tr>
<tr>
<td>Set missing as filled out incorrectly</td>
<td>35 (3.5%)</td>
<td>61 (6.1%)</td>
<td>50 (5.0%)</td>
<td>88 (8.5%)</td>
<td>63 (6.1%)</td>
<td>43 (4.2%)</td>
</tr>
</tbody>
</table>
Table 2: EORTC QLU-C10D utility norms across countries

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>Poland</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>0.743a (0.24)</td>
<td>0.763b (0.23)</td>
<td>0.769c (0.25)</td>
<td>0.843d (0.18)</td>
<td>0.803e (0.17)</td>
<td>0.724f (0.26)</td>
</tr>
</tbody>
</table>

(a) Significant difference in comparison to all countries except Germany (p=0.45), France (p=0.06) and UK (p=0.31).
(b) Significant difference in comparison to all countries except Canada (p=0.45) and France (p=0.94)
(c) Significant difference in comparison to all countries except Canada (p=0.06) and Germany (p=0.94)
(d) Significant difference in comparison to all other countries
(e) Significant difference in comparison to all other countries
(f) Significant difference in comparison to all countries except Canada (p=0.31)

SD = Standard Deviation
Table 3: EORTC QLU-C10D utility norms across countries, age and sex

<table>
<thead>
<tr>
<th>Country</th>
<th>18-29 yrs Male</th>
<th>18-29 yrs Female</th>
<th>30-39 yrs Male</th>
<th>30-39 yrs Female</th>
<th>40-49 yrs Male</th>
<th>40-49 yrs Female</th>
<th>50-59 yrs Male</th>
<th>50-59 yrs Female</th>
<th>60-69 yrs Male</th>
<th>60-69 yrs Female</th>
<th>70+ yrs Male</th>
<th>70+ yrs Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0.779 (0.230)</td>
<td>0.726 (0.208)</td>
<td>0.664 (0.308)</td>
<td>0.766 (0.234)</td>
<td>0.767 (0.242)</td>
<td>0.737 (0.254)</td>
<td>0.736 (0.256)</td>
<td>0.727 (0.246)</td>
<td>0.731 (0.253)</td>
<td>0.754 (0.213)</td>
<td>0.779 (0.197)</td>
<td>0.761 (0.186)</td>
</tr>
<tr>
<td>Germany</td>
<td>0.755 (0.283)</td>
<td>0.830 (0.121)</td>
<td>0.811 (0.227)</td>
<td>0.791 (0.255)</td>
<td>0.808 (0.195)</td>
<td>0.793 (0.225)</td>
<td>0.799 (0.202)</td>
<td>0.702 (0.238)</td>
<td>0.748 (0.203)</td>
<td>0.730 (0.260)</td>
<td>0.720 (0.235)</td>
<td>0.684 (0.238)</td>
</tr>
<tr>
<td>France</td>
<td>0.780 (0.279)</td>
<td>0.733 (0.281)</td>
<td>0.790 (0.277)</td>
<td>0.742 (0.253)</td>
<td>0.781 (0.259)</td>
<td>0.738 (0.266)</td>
<td>0.783 (0.271)</td>
<td>0.752 (0.222)</td>
<td>0.811 (0.221)</td>
<td>0.781 (0.216)</td>
<td>0.804 (0.208)</td>
<td>0.751 (0.210)</td>
</tr>
<tr>
<td>Italy</td>
<td>0.857 (0.206)</td>
<td>0.839 (0.195)</td>
<td>0.796 (0.231)</td>
<td>0.819 (0.188)</td>
<td>0.832 (0.205)</td>
<td>0.807 (0.187)</td>
<td>0.887 (0.163)</td>
<td>0.845 (0.159)</td>
<td>0.877 (0.148)</td>
<td>0.833 (0.166)</td>
<td>0.899 (0.128)</td>
<td>0.834 (0.174)</td>
</tr>
<tr>
<td>Poland</td>
<td>0.837 (0.175)</td>
<td>0.779 (0.205)</td>
<td>0.787 (0.186)</td>
<td>0.792 (0.169)</td>
<td>0.837 (0.134)</td>
<td>0.802 (0.187)</td>
<td>0.816 (0.166)</td>
<td>0.808 (0.158)</td>
<td>0.815 (0.147)</td>
<td>0.794 (0.174)</td>
<td>0.814 (0.125)</td>
<td>0.759 (0.198)</td>
</tr>
<tr>
<td>UK</td>
<td>0.674 (0.308)</td>
<td>0.758 (0.193)</td>
<td>0.747 (0.281)</td>
<td>0.673 (0.258)</td>
<td>0.745 (0.295)</td>
<td>0.697 (0.276)</td>
<td>0.695 (0.289)</td>
<td>0.692 (0.279)</td>
<td>0.755 (0.237)</td>
<td>0.752 (0.225)</td>
<td>0.787 (0.183)</td>
<td>0.746 (0.185)</td>
</tr>
<tr>
<td>Country</td>
<td>Constant (C)</td>
<td>p</td>
<td>Age(β_1)</td>
<td>p</td>
<td>Sex(β_2)</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0.708*</td>
<td><0.001</td>
<td>0.001</td>
<td>0.071</td>
<td>0.003</td>
<td>0.821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.875*</td>
<td><0.001</td>
<td>-0.002*</td>
<td><0.001</td>
<td>-0.039*</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.835*</td>
<td><0.001</td>
<td>0.001</td>
<td>0.073</td>
<td>-0.039*</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0.811*</td>
<td><0.001</td>
<td>0.001*</td>
<td>0.002</td>
<td>-0.048*</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>0.782*</td>
<td><0.001</td>
<td><0.000</td>
<td>0.884</td>
<td>-0.040*</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0.688*</td>
<td><0.001</td>
<td>0.002*</td>
<td>0.004</td>
<td>-0.024</td>
<td>0.153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a: Age set so that constant reflects 18 years (i.e. calculate actual age – 18 years).
*b: Sex code: male = 0, female = 1.
*: statistically significant influence (p assumed 0.05).
Fig. 1: Countries’ mean EORTC QLU-C10D values, adjusted for age and sex
Fig. 2: Mean utilities across countries, age and sex.