
Florian Zeevat, MSc, Jan C. Wilschut, Prof, Cornelis Boersma, Prof, Maarten J. Postma, Prof

PII: S1098-3015(22)04754-4
DOI: https://doi.org/10.1016/j.jval.2022.11.020
Reference: JVAL 3709

To appear in: Value in Health

Received Date: 10 March 2022
Revised Date: 11 October 2022
Accepted Date: 28 November 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022, International Society for Pharmacoeconomics and Outcomes Research, Inc. Published by Elsevier Inc.
Letter to the Editor/Short Report

Title: Reducing Hospital Capacity Needs for Seasonal Respiratory Infections: the case of switching to High-Dose influenza vaccine for Dutch older adults.

Running Title: A switch to QIV high dose in the Netherlands

Florian Zeevat, MSc, Department of Health Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
f.zeevat@rug.nl

Jan C. Wilschut, Prof, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, The Netherlands

Cornelis Boersma, Prof, Faculty of Management Sciences, Open University, Heerlen, The Netherlands; Department of Health Sciences, University Medical Center Groningen, University of Groningen, The Netherlands; Health-Ecore, Zeist, the Netherlands

Maarten J. Postma, Prof, Department of Health Sciences, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics & Business, Groningen, The Netherlands

Author Contributions:

Concept and design: Zeevat, Wilschut, Boersma, Postma

Acquisition of data: Zeevat

Analysis and interpretation of data: Zeevat, Boersma, Postma

Drafting of the manuscript: Zeevat, Wilschut, Boersma, Postma

Critical revision of the paper for important intellectual content: Zeevat, Boersma, Postma

Statistical analysis: Zeevat

Provision of study materials or patients: x
Obtaining funding: x

Administrative, technical, or logistic support: x

Supervision: Wilschut, Boersma, Zeevat

Other: x

Conflict of Interest Disclosures: Drs Boersma and Postma reported receiving grants and personal fees from various medical and pharmaceutical industries, all outside the submitted work. Dr Boersma holds stocks in Health-Ecore. Dr Postma holds stocks in Health-Ecore and Pharmacoeconomics Advice Groningen (PAG Ltd) and is advisor to Asc Academics, all pharmacoeconomic consultancy companies. Dr. Postma is an editor for Value in Health and had no role in the peer-review process of this article. No other disclosures were reported.

Funding/Support: The authors received no financial support for this research.

Acknowledgment: This study was supported by EU IMI project on Vaccines and Infectious Diseases in the Ageing Population project (VITAL, awarded to FZ, CB, MP). The VITAL project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No. 806776. The JU receives support from the European Union’s Horizon 2020 research and innovation programme, and EPPIA-members.

Precis: We analysed the impact on respiratory and cardiovascular hospitalizations and costs of the switch from standard-dose to high-dose quadrivalent influenza vaccine in the Netherlands.

Word Count: 1125 (max 1500)

Number of Pages: 4

Number of Figures: 0

Number of Tables: 1

Appendix:
Pages: 2
Figures: 0
Optimal protection against influenza is more important than ever, since, with COVID-19 restrictions being lifted, severe seasonal influenza epidemics are to be expected. Indeed, immunity in the population has lacked regular boosting due to social distancing and other restrictions resulting in increased risks for seasonal influenza epidemics\(^1\). Such epidemics will come with additional pressure on hospital and intensive-care unit capacity and corresponding societal costs, especially among adults 60 years and older (60+). For this risk group, the quadrivalent influenza vaccine (QIV) has been in use since 2019/2020 in the Netherlands. However, the vaccine effectiveness of QIV remains suboptimal in elderly individuals. Notably, we demonstrated that even if the 60+ group in the Netherlands had been vaccinated with QIV during the 2010/11 through 2017/18 seasons, on average still hundreds of influenza-associated respiratory disease hospitalizations would have occurred among these senior individuals on an annual basis\(^2\). Ergo, despite vaccination with QIV, there remains a considerable burden of influenza among older adults with a corresponding need for healthcare capacity. With ongoing developments in the area of influenza vaccines, further improvements in vaccination programmes might therefore be considered. Potential improvements include, for example, a switch from the standard-dose (SD) to a high-dose (HD) vaccine formulation for the 60+ population. Current SD inactivated influenza vaccines contain 15 µg of the hemagglutinin (HA) antigen per virus strain included in the vaccine. By contrast, the HD vaccine contains 60 µg HA per strain. HD influenza vaccine has been shown to be superior compared to SD in various studies\(^3\)-\(^5\) with improved vaccine effectiveness and no increase in serious adverse events. QIV-HD is available for older adults in the United States (US) since 2020, and its use has been recommended in countries like Canada, Germany, Italy, and the UK\(^6\)-\(^10\). Recently, the potential benefit of a switch from SD to HD to further reduce hospitalizations has been demonstrated in retrospective database analyses in the US\(^11\)-\(^13\). Here, we estimated the potential impact – specifically in terms of hospital admissions and related costs - of a switch from QIV-SD to QIV-HD in the Netherlands. Hospital capacity has emerged as a crucial factor in infectious disease control during the COVID-19 pandemic, justifying the focus of our study.

The remaining burden of influenza in the Netherlands among the 60+ group can be estimated at approximately 61,500 influenza cases annually, over the period of 2010/11-2017/18 (with assumed QIV-SD coverage rates of 50% and 70% among 60-65-olds and 65+, respectively)\(^2\). This remaining burden is largely due to immunosenescence contributing to the modest vaccine effectiveness of QIV-SD in this specific group. As indicated above, QIV-HD, due to its four times higher dose of antigen compared to QIV-SD, induces a stronger immune
response and, therefore, overcomes part of the immunosenescence effects and provides older adults with improved protection against influenza. Specifically, the HD-vaccine has been shown to provide superior protection against cardiovascular complications of influenza and corresponding hospitalizations4. Cardiovascular complications have been found to occur from days up to months after the actual influenza infection14-16.

We estimated the number of hospitalizations in the 60+ population that could have been additionally avoided with the use of QIV-HD instead of QIV-SD in the season 2019/20. In this season, QIV-SD was used for the first time and the epidemiology was not influenced yet by the COVID-19 restrictions, potentially enhancing representativeness for coming years. The hospitalization estimates for the 60+ population vaccinated with QIV-SD over the period 2010-2018 by Zeevat et al.2 were used as a starting point (see Supplementary Materials, Table A), reflecting hospitalizations of both vaccinated and non-vaccinated individuals. Subsequently, we related the average number of hospitalizations and vaccination coverage rates over the period 2010-2018 to the vaccine effectiveness rates of QIV-SD with regards to respiratory as well as cardiovascular complications of influenza, and the most recent coverage rates for the 2019/20 season as indicated in the Supplementary Materials2,11,17-20. Also, in the Supplementary Materials we provide the baseline costs for complications as used to estimate overall corresponding savings2,3,21-24. Uncertainty intervals (UIs) for hospitalizations averted and corresponding cost savings were taken into the analysis using 95% confidence intervals on the vaccine effectiveness estimates for the 2019/20 season18-20.

Using the average hospitalization data during the seasons 2010/11-2017/18 as baseline, it follows that in a scenario in which during the season 2019/20 QIV-HD would have been used instead of QIV-SD, 220 hospitalizations among the 60+ group would have been additionally averted (Table 1). Of these averted hospitalizations, 150 were cardiovascular-related hospitalizations using the assumption that there is a 1:1.89 ratio between respiratory and cardiovascular-related hospitalizations caused by influenza for vaccinating with QIV-HD and 1:1.92 with QIV-SD19. These additional hospitalizations, that could have been avoided by the use of the HD vaccine, represent a total expenditure of €1,219,779 (UI: 1,089,813-1,348,549) of which €841,531 (i.e. 69% of the total costs) is attributable to the aversion to cardiovascular-related hospitalizations.
Table 1: Estimated remaining hospitalizations after vaccination of senior Dutch citizens with QIV-SD or QIV-HD, showing hospitalizations additionally averted by QIV-HD (including the uncertainty interval), during the 2019/20 influenza season, taking the estimated average level of influenza-related respiratory hospitalizations with the use of QIV-SD during the 2010/11 through 2017/18 seasons and 2019/20 vaccine coverage rates as the baseline.

As exemplified by the COVID-19 pandemic, outbreaks of respiratory infections pose a significant pressure on hospital capacity in the Netherlands as well as elsewhere. However, this pressure is by no means restricted to the current COVID-19 crisis. For example, influenza regularly poses strains on hospital capacity during annual winter epidemics. In addition, increased influenza-related cardiovascular events may put an even higher pressure on hospital capacity. For the coming years, it is to be anticipated that epidemics of respiratory infections, influenza- and coronavirus alike, will coincide during winter seasons. Therefore, maximal control of these seasonal epidemics is crucial to avoid hospital capacity overload. Optimization of influenza vaccination represents one measure to achieve such maximal control. In the present study, we demonstrate that a relevant improvement of influenza vaccination among older adults in the Netherlands can be achieved by switching from the current QIV-SD to QIV-HD. Indeed, based on the 2019/20 influenza season, we estimate that such a switch could avert an additional 220 cardio-respiratory hospitalizations annually, corresponding to almost €1.22 million in terms of cost savings in hospitals. This demonstrates that not only a significant reduction in pressure on hospital capacity can be achieved, but that a switch from QIV-SD to QIV-HD comes with notable cost savings as well. The significance of our results is further illustrated by comparing the 71 respiratory hospitalizations avoided in this analysis with previously published results, where it was estimated that switching from TIV to QIV (i.e. SD) could result in 84 avoided respiratory-related hospitalizations. These published results were based on a slightly broader population of those aged 60+ as well as high-risk individuals below 60 years. Notably, these earlier findings gave rise to the switch from TIV to QIV (i.e. SD) in the Netherlands.

As indicated above, the major share of the benefits of the switch from QIV-SD to QIV-HD come from cardiovascular-related hospital admissions (68% of hospitalizations avoided). This logically derives from our assumption that for every respiratory hospitalization almost two cardiovascular hospitalizations occur. In general, it can be concluded that including
cardiovascular-related hospitalizations in a cost-effectiveness analysis may have a major impact on the favourability of the result than if respiratory-related hospitalizations alone are included.

Against the perspective of a potential resurge of influenza now that COVID-19 control measures are relaxed after two years of lockdowns and social distancing and in view of the recurrent pressure on hospital capacity within the broader context of winter peaks in respiratory infections, including not only influenza but also coronavirus, respiratory syncytial virus and pneumococcal infections, further improvement of the Dutch influenza vaccination programme by a switch to QIV-HD appears not only timely but urgent.

References

16. Warren-Gash C, Blackburn R, Whitaker H, McMenamin J, Hayward AC. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke:

21. Centraal Bureau voor de Statistiek (CBS). Statline - Consumentenprijzen; prijsindex 2015=100

Table 1: Estimated remaining hospitalizations after vaccination of senior Dutch citizens with QIV-SD or QIV-HD, showing hospitalizations additionally averted by QIV-HD (including the uncertainty interval), during the 2019/20 influenza season, taking the estimated average level of influenza-related respiratory hospitalizations with the use of QIV-SD during the 2010/11 through 2017/18 seasons2 and 2019/20 vaccine coverage rates as the baseline17,18.

<table>
<thead>
<tr>
<th>Age category (years)</th>
<th>Complication</th>
<th>QIV-HD</th>
<th>QIV-SD</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-64</td>
<td>Respiratory</td>
<td>30</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular</td>
<td>56</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>86</td>
<td>101</td>
<td>15</td>
</tr>
<tr>
<td>65+</td>
<td>Respiratory</td>
<td>405</td>
<td>471</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular</td>
<td>765</td>
<td>905</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>1170</td>
<td>1375</td>
<td>205</td>
</tr>
<tr>
<td>Total (60+)</td>
<td>All</td>
<td>1256</td>
<td>1476</td>
<td>220 (197-244)</td>
</tr>
</tbody>
</table>