Disability-Adjusted Life Years for Drug Overdose Crisis and COVID-19 Are Comparable During the Two Years of Pandemic in the United States

Qiushi Chen, PhD, Paul M. Griffin, PhD, Sarah S. Kawasaki, MD

PII: S1098-3015(22)04742-8
DOI: https://doi.org/10.1016/j.jval.2022.11.010
Reference: JVAL 3697

To appear in: Value in Health

Received Date: 29 April 2022
Revised Date: 19 October 2022
Accepted Date: 17 November 2022

Please cite this article as: Chen Q, Griffin PM, Kawasaki SS, Disability-Adjusted Life Years for Drug Overdose Crisis and COVID-19 Are Comparable During the Two Years of Pandemic in the United States, Value in Health (2022), doi: https://doi.org/10.1016/j.jval.2022.11.010.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022, International Society for Pharmacoconomics and Outcomes Research, Inc. Published by Elsevier Inc.
Disability-Adjusted Life Years for Drug Overdose Crisis and COVID-19 Are Comparable During the Two Years of Pandemic in the United States

Running title: DALYs of drug overdose crisis and COVID-19 in US

Qiushi Chen, PhD,1,2 Paul M. Griffin, PhD,1,3 Sarah S. Kawasaki, MD4,5

1 The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA
2 Institute for Technology Assessment, Massachusetts General Hospital, Boston, MA
3 Consortium for Substance Use and Addiction, Pennsylvania State University, University Park, PA
4 Psychiatry and Medicine, Penn State College of Medicine, Hershey, PA
5 Psychiatry and Internal Medicine, Penn State Health, Hershey, PA

Contact information for corresponding author:
Qiushi Chen, PhD
Department of Industrial and Manufacturing Engineering
The Pennsylvania State University
302 Leonhard Building
University Park, PA 16802
Phone: 814-863-4562
Email: q.chen@psu.edu

Author contributions: Concept and design: Chen, Griffin, Kawasaki. Acquisition of data: Chen. Analysis and interpretation of data: Chen, Griffin. Drafting of the manuscript: Chen, Griffin, Kawasaki. Critical revision of the paper for important intellectual content: Chen, Griffin, Kawasaki. Statistical analysis: Chen.

Conflict of Interest Disclosures: The authors reported no conflicts of interest.
Funding/Support: Kawasaki was supported by National Institutes of Health under award number grant AT010118, National Institute on Drug Abuse under award number AWD0000584 (135723-1), and Substance Abuse and Mental Health Services Administration under award number TI081432.

Role of Funders/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Acknowledgments: We would like to sincerely thank Dr. Susan Griffin for suggesting the initial conceptual ideas and constructive comments on the manuscript.

Word count: 3187

Number of Pages: 19

Number of Figures: 1

Number of Tables: 1

Appendix:
Pages: 5
Figures: 0
Tables: 3
Disability-Adjusted Life Years for Drug Overdose Crisis and COVID-19 Are Comparable During the Two Years of Pandemic in the United States

ABSTRACT

Objectives: The drug overdose crisis with shifting patterns from primarily opioid to polysubstance uses and COVID-19 infections are two concurrent public health crises in the United States, affecting the population of sizes in different magnitudes (approximately <10 million for substance use disorder (SUD) and drug overdoses vs. 80 million for COVID-19 within two years of the pandemic). Our objective is to compare the relative scale of disease burden for the two crises within a common framework, which could help inform policymakers with resource allocation and prioritization strategies.

Methods: We calculated disability-adjusted life years (DALYs) for SUD (including opioids and stimulants) and COVID-19 infections, respectively. We collected estimates for SUD prevalence, overdose deaths, COVID-19 cases and deaths, disability weights, and life expectancy from multiple publicly available sources. We then compared age distributions of estimated DALYs.

Results: We estimated a total burden of 13.83 million DALYs for SUD and drug overdoses and 15.03 million DALYs for COVID-19 in two years since March 2020. COVID-19 burden was dominated by the fatal burden (>95% of total DALYs), whereas SUD burden was attributed to both fatal (53%) and non-fatal burdens (47%). The highest disease burden was among individuals aged 30-39 for SUD (27%) and 50-64 for COVID-19 (31%).

Conclusions: Despite the smaller size of the affected population, SUD and drug overdoses resulted in comparable disease burden to the COVID-19 pandemic. Additional resources supporting evidence-based interventions in prevention and treatment may be warranted to ameliorate SUD and drug overdoses during both the pandemic and post-pandemic recovery.
HIGHLIGHTS

- The COVID-19 pandemic and drug overdoses (from both opioids and stimulants) are two concurrent public health crises in the United States (US). To help inform public health policy, it is important to understand the relative scales of the disease burden that each has placed on society.

- This study evaluated the disease burden of the drug overdose crisis (substance use disorder and the associated overdose deaths) and COVID-19 in the US during the two-year period since the COVID-19 pandemic. No prior study has compared the disease burden for these two major public health crises in the US under the same measure, and no systematic review exists on this topic.

- Despite the smaller size of the affected population, substance use disorder and drug overdoses resulted in a comparable disease burden to the COVID-19 infections in the US during the two years of the pandemic, which may warrant substantial resources and continued endeavors to ameliorate the ongoing drug overdose crisis.
INTRODUCTION

Since the World Health Organization (WHO) declared the COVID-19 outbreak as a global pandemic in March 2020, the COVID-19 pandemic has taken 825,000 lives in the US by the end of the year 2021 and close to one million lives as of April 2022.1 With over two years of vaccination, social distancing, and other public health measures, the cases, deaths, and hospitalizations in the US has started to show a steady decline.1,2

While the COVID-19 pandemic has been considered the pressing public health crisis over the past two years, it was not the only public health threat in this country. The drug overdose epidemic was highly publicized as a major public health crisis before the COVID-19 pandemic started and has remained to be a public health threat. Over 841,000 Americans have died from drug overdoses since 1999; the number of overdose deaths in one year increased to 71,000 in 2019 (i.e., on average 8 deaths per hour).3 Although the majority of these overdose deaths were due to opioids, stimulant-related deaths have greatly increased in recent years. In 2017, 19.7\% of drug overdose deaths involved cocaine and 14.7\% involved psychostimulants,4 pointing to changing nature of the drug overdose crisis to a polysubstance landscape. When the response to the COVID-19 pandemic became the top public health priority in 2020, overdose deaths did not decline. On the contrary, numerous reports revealed that drug overdose deaths significantly increased during the pandemic.5 The total number of overdose deaths in the US reached a record high of 92,000 in 2020, with the largest single-year percentage increase (29\%) since 1999,6 and topped 100,000 drug overdose deaths during the 12-month period ending in April 2021.7
Not only are the death tolls by the two crises at different scales, the sizes of the affected population have also been presented at different magnitudes. The 2020 National Survey of Drug Use and Health (NSDUH) reported the past-year initiation of major illicit drug use (opioids and stimulants) to be 2.7 million and the past-year prevalence of substance use disorder for illicit drugs except marijuana to be 6.1 million among people aged 12 or older. For COVID-19, within its first two years, 78 million people were infected with 90% of infected cases aged 12 or older—an average of 35 million incidence for each year that is still substantially higher than that for illicit drug use.

Although the two concurrent crises appear to have drastically different scales, it is nontrivial to determine the relative order of magnitude of the disease burden that each has placed on society—the size of the affected population does not always necessarily reflect the true disease burden. Disease burden is a common measure used to inform public health policymakers about resource allocation and prioritization strategies for improving population health. It is therefore important to understand the burdens of the two crises—one being on a steady decline while the other one remaining stubbornly persistent and even worsening—retrospectively, to inform the health policies going forward. It is also important to understand the relative importance of the fatal versus non-fatal portions of the disease burden as this also informs the type of evidence-based interventions to prioritize. In this study, we aimed to estimate the disease burden of each by disability-adjusted life years (DALYs), a standard measure used in the Global Burden of Disease (GDB) Studies, and compare the resulting age distributions of the disease burden for the two public health crises.
METHODS
We used DALYs to quantify the disease burden following the recommended methods by the World Health Organization. DALYs are calculated as the sum of (1) years lived with disability (YLDs) that are representing the non-fatal burden, and (2) years of life lost (YLLs) due to premature death that are representing the fatal burden. Time discounting for future lost years of healthy life and age-weighting to give less weight to years of life lost at young and older ages were applied in earlier GBD studies, but their justification and interpretation have been debated. The World Health Organization (WHO) adopted the approach of not applying time discounting and age-weighting when calculating DALYs since 2012, and we followed the same approach in this analysis. We estimated the total DALYs of substance use disorder (SUD) representing the drug overdose crisis and those of COVID-19 infections among the population of age 12 and above during the two years of the COVID-19 pandemic starting from March 2020 in the US. Our analysis focused on the population of age 12 and above due to the data availability for drug use estimates (consistent with the lowest age for the prevalence estimates reported by NSDUH, see more details below) and the very low risk of hospitalization and death from COVID-19 for this age group.

Years Lived with Disability (YLDs)
We calculated the YLDs of SUD using a prevalence-based approach. Specifically, we obtained prevalence estimates of SUD in the past year from the 2020 National Survey on Drug Use and Health (NSDUH) for three major types of substances—opioids, cocaine, and methamphetamine, separately (Table S1). We chose these drug types primarily because they have been the key drugs involved in the changing drug overdose crisis, which has shifted from...
prescription opioids (wave 1), to heroin (wave 2), synthetic opioids (wave 3), and now towards polysubstance uses, particularly with stimulants (wave 4). Further, the overdose deaths involving these drugs contribute to 90% of the total overdose deaths from all drugs. The disability weight values were based on the estimates for heroin and other opioid dependence, cocaine dependence, and amphetamine dependence (as a surrogate for methamphetamine) from the 2019 GBD Study. We multiplied the prevalence estimate by the disability weight for each substance and summed over the three substances to calculate the total YLDs for one year. Since the NSDUH reported the past-year SUD for each specific substance only by limited age groups of 12-17, 18-25, and 26+, we approximated the distribution of refined age categories within the 26+ age group based on the estimates of the past-month misuse of each substance by detailed age categories (Table S2).

To calculate the COVID-19 related YLDs, we employed the incidence-based approach following the recently published guide and studies. We considered YLDs of COVID-19 infections based on different health states including mild, severe (hospitalized), critical (admitted to intensive care unit), and post-acute states. We did not consider the YLDs for asymptomatic infections of COVID-19. The YLD of each health state was calculated by multiplying the incidence, duration, and disability weight of the same health state. The proportion of asymptomatic, mild, severe cases, and post-acute symptoms were estimated from the published studies (Table S1). We assumed a duration of 21 days (equivalently, 21/365 years) as a conservative estimate for all symptomatic infections, given the reported values ranging widely but mostly below three weeks, and 90 days for the post-acute state with prolonged symptoms. As the disability weight for each COVID-19 health state was not directly available from the
Global Burden of Disease Study, we used the disability weights of similar clinical conditions as a proxy, following the same approach in the literature (Table S1).15 The total COVID-19 cases from March 2020 to February 2022 and the age distribution were obtained from the Centers for Disease Control and Prevention (CDC) COVID Data Tracker (data accessed as of August 2022).1

\textbf{Years of Life Lost (YLLs)}

We computed YLLs by multiplying the number of deaths with the life expectancy of each age and summing over all ages. We estimated the life expectancy of each (single-year) age from the latest US life table.23 The latest mortality data were obtained from the CDC Wide-ranging ONline Data for Epidemiologic Research (WONDER) Provisional Multiple Causes of Deaths Data.3 We identified the COVID-19-related deaths by the International Classification of Diseases, Tenth Revision (ICD-10) multiple causes of death (MCD) code U07.1. Overdose deaths from opioids and stimulants (to be consistent with the selected drug types for prevalence estimates and YLD calculation) were identified by the underlying cause of death code (UCD) X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–14 (undetermined intent) and MCD code T40.0-T40.4, T40.6 (opioids), T40.5 (cocaine), and T43.6 (psychostimulants with abuse potential). Due to the longer lag time for drug overdose deaths compared with other causes of death,24 the numbers of overdose deaths were deemed incomplete in January and February 2022. We imputed the values for these months using the past 6-month average (i.e., from July to December of 2021) as a conservative estimate given its increasing trend.3,5 All counts of deaths were stratified by single-year age category. We replaced all suppressed values
(counts below 10 were suppressed from WONDER) with zero, which had minimal impact on the results as suppressed values appeared in only a few of the very large age groups.

RESULTS

During the period of two years since the pandemic from March 2020 to February 2022, the total direct impact of COVID-19 infections among the population of age 12 and above in the US was estimated to be 15.03 million (5,363 per 100,000 population with ages 12 and older) DALYs, consisting of 14.43 million YLLs (5,148 YLLs per 100,000 population) as the fatal burden and 0.60 million YLDs (215 YLDs per 100,000 population) as the non-fatal burden (Table 1). The fatal burden contributed to the majority (96.0%) of the total direct burden of COVID-19. During the same period, SUD and drug overdoses resulted in a total burden of 13.83 million DALYs (4,936 DALYs per 100,000 population), comprised of 6.48 million YLDs (2,312 YLDs per 100,000 population) and 7.35 million YLLs (2,624 YLLs per 100,000 population) from drug overdose deaths. The total YLLs and YLDs represented 53.2% and 46.8% of the total disease burden of SUD, respectively. Results for one-way sensitivity analysis by varying key parameters over uncertainty ranges are included in the Appendix (Table S3).

Figure 1 compares the age distribution of the disease burdens. For COVID-19 infections, most of the burden was attributed to the 50 and above age groups, with the highest DALYs between ages 50-64 (31% of total DALYs). Furthermore, the YLDs of COVID-19 infections were nearly negligible compared with the YLLs, especially in the elderly population of age 50 and above. For SUD and drug overdose, the disease burden was primarily concentrated between ages 18-64,
contributing to 93% of the total burden, with the highest burden among ages 30-39 (27% of total DALYs). Unlike COVID-19 infections, for SUD and drug overdoses, the non-fatal burden (YLDs) represented a substantial portion of the total disease burden in most age groups; the fatal burden (YLLs) constituted the majority (50-63%) of total DALYs across different age groups between 18-64 years.

DISCUSSION

We estimated a total of 15.03 million DALYs resulted from SUD and drug overdoses and 13.83 million DALYs from COVID-19 infections in the US from March 2020 to February 2022, two years into the pandemic. Our results imply that the disease burdens of these two public health crises are close with comparable order of magnitude despite the disproportionately smaller population affected by SUD and drug overdoses. The burden of COVID-19 was predominately attributable to deaths in the elderly population of age 50 and above, as the disability from COVID symptoms was mostly mild and temporary with a relatively short duration. In contrast, the burden of drug use and overdose was borne primarily by the younger population, driven by the long-term disability and the greater years of life lost due to overdose deaths at younger ages.

Despite the time-varying patterns of multiple COVID-19 waves and the continuing increase in drug overdose deaths, each contributed approximately 7 million DALYs per year. In fact, according to the estimates of disease burden by disease categories from the 2019 GBD Study,25,26 there were only a few broad disease categories resulting in greater than 7 million DALYs in 2019, which were cardiovascular diseases (17.3 million DALYs), neoplasms (16.7 million DALYs), musculoskeletal disorders (14.0 million DALYs), mental disorders (7.3 million DALYs),
DALYs) and chronic respiratory diseases (7.0 million DALYs). The disease burden of specific illnesses, such as diabetes, stroke, chronic obstructive pulmonary diseases, chronic kidney diseases, and Alzheimer’s diseases, were all well below 7 million DALYs annually. This comparison clearly illustrated the significance of the disease burden attributed to these two public health crises in the past two years.

Our analysis could have underestimated the disease burden of SUD and overdoses. For estimating the morbidity of SUD, we only included the prevalence of opioids, cocaine, and methamphetamines from the NSDUH reports, as these three drug categories contributed to the majority of total drug overdose deaths and have well-defined disability weight parameters from the GBD report. Although it is possible that the SUD from these three drugs were not necessarily mutually exclusive, the summation of their estimated prevalence value remained lower than the prevalence for “illicit drugs other than marijuana” from the NSDUH report, implying that our approach still likely underestimated the total morbidity burden of SUDs. Furthermore, although the NSDUH 2020 has revised its survey question and criteria for determining SUD, the long-criticized issue of underestimating SUD prevalence may still persist due to the stigmatized drug use behavior among the hard-to-reach population. In addition, underestimating SUD prevalence is particularly common for older adults. Despite the probable underestimation, our estimates were still higher than the GBD estimates in 2019 with a total of 6.12 million DALYs (2.98 million YLDs and 3.13 million YLLs) attributed to drug use disorders (excluding alcohol), highlighting the pressing need of actions in response to the worsening SUD and drug overdose crisis.
Our estimate of the COVID-19 mortality burden also merits some further discussion. We used the incidence-based approach to estimate YLDs for COVID-19 and the prevalence-based approach for the drug overdose crisis. Historically, the GBD study has transitioned from the incidence-based to the prevalence-based approach considering that disease incidence rates and duration were more difficult to obtain from conventional epidemiological studies, which, however, are mostly straightforward estimates in the context of COVID-19. One limitation of our COVID-19 disease burden estimate is that there lack of exact estimates of disability weights for COVID-19. We followed the approach in recent studies where the disability weights for COVID-19 states were inferred from other similar conditions of respiratory diseases. In fact, our sensitivity analysis implied that the uncertainty in the estimates of these disability weights may have a very limited impact on the results of the total disease burden since asymptomatic cases constituted a substantial portion of all infections. Furthermore, research for fully understanding the long COVID is still in progress. The parameters—frequency, duration, and disability weight—of the long COVID will affect the estimation of the non-fatal burden of COVID-19. As the follow-up lengths and definitions of long COVID in existing studies varied substantially, we used a gross proxy of the disability weight for the post-acute COVID state and very conservative assumptions of its frequency and duration in our analysis. Future research is needed to standardize the definition and to refine the evaluation of its impact on health measured with disability weight and quality of life.

We also acknowledge that the YLLs for COVID-19 deaths could be overestimated due to preexisting chronic conditions, as roughly 84% of individuals that died due to COVID had at least one chronic comorbidity including cardiovascular diseases, diabetes, hypertension, or
chronic obstructive pulmonary disease. Thus, these patients would likely not have achieved the life expectancy of the general population. On the other hand, several studies have argued that the full impact of the pandemic on mortality in society could be greater than the reported COVID-19 deaths, as the changes in other social, economic, and behavioral aspects during the pandemic may also affect overall mortality. A global analysis predicted the cumulative excess mortality due to the COVID-19 pandemic in the US to be 1.13 million for 2020-2021, which is over one-third higher than the 825,000 reported deaths during the same period. In our calculation, we chose to use the reported deaths from the same mortality data source to make the comparison between the two epidemics more meaningful. Considering the variations in the estimates, our results demonstrated that the disease burden of SUD has been qualitatively comparable in the order of magnitude with that of COVID-19 infections.

Given the sharp increases in overdose deaths during the pandemic, there are understudied interactive effects between the COVID-19 pandemic and the SUD epidemic. The interplay is bidirectional. On the one hand, SUD is a risk factor associated with increased disease severity and mortality of COVID-19. That is, the pre-existing drug overdose crisis had increased the COVID-19 burden disproportionately among the population with SUD. On the other hand, increases in substance use have been observed since the COVID-19 pandemic. The pandemic presented numerous challenges, barriers, and disruptions for people with SUD and those in recovery. Job loss, social isolation, and neglected illness may have negatively impacted individuals with SUDs and destabilized patients in otherwise sustained recovery during this time period. Mitigation efforts such as vaccination that could effectively reduce the stress of COVID-19 on society would help to reduce social restrictions and promote economic recovery sooner,
which will enable more individuals to access treatment and avoid premature death due to overdose.

As the COVID-19 pandemic recedes with increased vaccination rates and other mitigation efforts, we expect that the increased barriers to substance abuse services and the exacerbated burden of drug overdoses induced by the COVID-19 pandemic would be hopefully alleviated, which, however, by no means implies the resolution of the drug overdose crisis. SUD and overdose deaths will stubbornly remain and will demand the necessary attention and investment to address them. SUD and overdose deaths have been prevalent for decades and show little sign of abatement. After two years of consistent decline, overdose deaths increased by 30% during the COVID-19 pandemic. Effective medications and treatments are available, however, too many individuals with SUD lack health insurance and/or access to quality evidence-based intervention programs. Evidence-based medications with psychosocial services for SUD remain deeply stigmatized and hard to access in many rural locations.

While the fatal burden from overdose deaths constitutes most of the disease burden of SUD, its non-fatal burden is substantial. This implies that policies that solely focus on overdose death reductions such as naloxone, fentanyl strip distribution, and other harm reduction interventions, are not sufficient to achieve sustained reductions of the disease burden in the long run. Policy changes will also be necessary to increase prevention efforts, access to behavioral health services, medication for the treatment of SUDs, and recovery services. Moreover, legislative efforts to decriminalize substance use and divert individuals to treatment may help destigmatize treatment and create new avenues for treatment introduction, such as various Law Enforcement
Assisted Diversion (LEAD) programs throughout the country.44,45 Implementing evidence-based interventions of prevention and treatment will be an effective solution to reduce both the non-fatal and fatal burden of substance use disorder and drug overdoses.

Overall, our analysis found that despite the smaller size of the affected population, SUD and drug overdoses resulted in a comparable disease burden to the COVID-19 infections in the US during the two years of the pandemic. Substantial resources and continued endeavors are warranted to ameliorate the ongoing drug overdose crisis.
REFERENCES

Figure 1. Comparison of years lived with disability and years of life lost for drug overdose crisis (substance use disorder and drug overdoses) and for COVID-19 infections by age groups, March 2020-February 2022.
Table 1. Disease burden for drug overdose crisis (substance use disorder and drug overdoses) and for COVID-19 infections, respectively, March 2020-February 2022.

<table>
<thead>
<tr>
<th></th>
<th>Number of YLLs (% of total)</th>
<th>Number of YLDs (% of total)</th>
<th>Number of DALYs (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug overdose crisis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(substance use disorder</td>
<td>7,353,334</td>
<td>6,477,988</td>
<td>13,831,322</td>
</tr>
<tr>
<td>and drug overdoses)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-17 years</td>
<td>65,594 (0.89%)</td>
<td>158,756 (2.45%)</td>
<td>224,350 (1.62%)</td>
</tr>
<tr>
<td>18-29 years</td>
<td>1,801,105 (24.49%)</td>
<td>1,425,364 (22%)</td>
<td>3,226,469 (23.33%)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>2,357,514 (32.06%)</td>
<td>1,383,586 (21.36%)</td>
<td>3,741,099 (27.05%)</td>
</tr>
<tr>
<td>40-49 years</td>
<td>1,548,039 (21.05%)</td>
<td>1,493,407 (23.05%)</td>
<td>3,041,446 (21.99%)</td>
</tr>
<tr>
<td>50-64 years</td>
<td>1,417,251 (19.27%)</td>
<td>1,392,751 (21.5%)</td>
<td>2,810,002 (20.32%)</td>
</tr>
<tr>
<td>65-74 years</td>
<td>154,726 (2.1%)</td>
<td>624,123 (9.63%)</td>
<td>778,849 (5.63%)</td>
</tr>
<tr>
<td>75-84 years</td>
<td>8,319 (0.11%)</td>
<td>(0%)</td>
<td>8,319 (0.06%)</td>
</tr>
<tr>
<td>85+ years</td>
<td>787 (0.01%)</td>
<td>(0%)</td>
<td>787 (0.01%)</td>
</tr>
<tr>
<td>COVID-19 infections</td>
<td>14,426,389</td>
<td>602,459</td>
<td>15,028,849</td>
</tr>
<tr>
<td>12-17 years</td>
<td>28,250 (0.2%)</td>
<td>50,633 (8.4%)</td>
<td>78,883 (0.52%)</td>
</tr>
<tr>
<td>18-29 years</td>
<td>338,941 (2.35%)</td>
<td>142,859 (23.71%)</td>
<td>481,800 (3.21%)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>813,798 (5.64%)</td>
<td>113,068 (18.77%)</td>
<td>926,866 (6.17%)</td>
</tr>
<tr>
<td>40-49 years</td>
<td>1,531,313 (10.61%)</td>
<td>95,994 (15.93%)</td>
<td>1,627,307 (10.83%)</td>
</tr>
<tr>
<td>50-64 years</td>
<td>4,556,238 (31.58%)</td>
<td>122,167 (20.28%)</td>
<td>4,678,405 (31.13%)</td>
</tr>
<tr>
<td>65-74 years</td>
<td>3,595,316 (24.92%)</td>
<td>44,781 (7.43%)</td>
<td>3,640,096 (24.22%)</td>
</tr>
<tr>
<td>75-84 years</td>
<td>2,416,286 (16.75%)</td>
<td>21,971 (3.65%)</td>
<td>2,438,257 (16.22%)</td>
</tr>
<tr>
<td>85+ years</td>
<td>1,146,248 (7.95%)</td>
<td>10,987 (1.82%)</td>
<td>1,157,235 (7.7%)</td>
</tr>
</tbody>
</table>

Abbreviations: SUD, substance use disorder; YLD, years lived with disability; YLL, years of life lost; DALY, disability-adjusted life years.