Advertisement

Pneumococcal Vaccination in Children: A Systematic Review and Meta-Analysis of Cost-Effectiveness Studies

Open AccessPublished:October 31, 2022DOI:https://doi.org/10.1016/j.jval.2022.10.006

      Highlights

      • Previous systematic reviews of cost-effectiveness analyses (CEAs) demonstrated that pneumococcal conjugate vaccines (PCVs) (13-valent PCV [PCV13] and 10-valent PCV [PCV10]) are generally cost-effective compared with no vaccination.
      • This systematic review is the first to perform a meta-analysis of CEAs by pooling the incremental net benefit of the PCV13 and PCV10 in children.
      • PCV13 was cost-effective compared with PCV10 when herd effects were considered from the payer perspective in both high-income countries and low- and middle-income countries. Our findings could facilitate decision making in countries where context-specific CEAs are not available.

      Abstract

      Objectives

      Pneumococcal conjugate vaccines (PCVs) have significantly reduced disease burden caused by Streptococcus pneumoniae, a leading cause of childhood morbidity and mortality globally. This systematic review and meta-analysis aimed to assess the incremental net benefit (INB) of the 13-valent PCV (PCV13) and 10-valent PCV (PCV10) in children.

      Methods

      We performed a comprehensive search in several databases published before May 2022. Studies were included if they were cost-effectiveness or cost-utility analyses of PCV13 or PCV10 compared with no vaccination or with each other in children. Various monetary units were converted to purchasing power parity, adjusted to 2021 US dollars. The INBs were calculated and then pooled across studies stratified by country income level, perspective, and consideration of herd effects, using a random-effect model.

      Results

      Seventy studies were included. When herd effects were considered, PCV13 was cost-effective compared with PCV10 from the payer perspective in both high-income countries (HICs) (INB, $103.94; 95% confidence interval, $75.28-$132.60) and low- and middle-income countries (LMICs) (INB, $53.49; 95% confidence interval, $30.42-$76.55) with statistical significance. These findings were robust across a series of sensitivity analyses. PCV13 was cost-effective compared with no vaccination across perspectives and consideration of herd effects in both HICs and LMICs, whereas findings were less consistent for PCV10.

      Conclusion

      PCVs were generally cost-effective compared with no vaccination in HICs and LMICs. Our study found that PCV13 was cost-effective compared with PCV10 when herd effects were considered from the payer perspective in both HICs and LMICs. The results are sensitive to the consideration of herd effects.

      Keywords

      Introduction

      Streptococcus pneumoniae is a leading cause of pneumococcal disease attributable to substantial morbidity and mortality worldwide.
      Pneumonia key facts. World Health Organization.
      • Wu D.B.
      • Chaiyakunapruk N.
      • Chong H.Y.
      • Beutels P.
      Choosing between 7-, 10- and 13-valent pneumococcal conjugate vaccines in childhood: a review of economic evaluations (2006-2014).
      • Dorosti H.
      • Eslami M.
      • Negahdaripour M.
      • et al.
      Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine.
      • Reglinski M.
      • Ercoli G.
      • Plumptre C.
      • et al.
      A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13.
      The most vulnerable age categories are young children and the elderly, with Streptococcus pneumoniae responsible for > 300 000 deaths in children younger than 5 years each year globally.
      • Wahl B.
      • O’Brien K.L.
      • Greenbaum A.
      • et al.
      Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15.
      Pneumococcal disease also leads to a substantial economic burden, where, in the absence of vaccines, disease would be attributable to $13.7 billion in health-system costs and $14.3 billion in societal costs worldwide annually.
      • Chen C.
      • Liceras F.C.
      • Flasche S.
      • et al.
      Effect and cost-effectiveness of pneumococcal conjugate vaccination: a global modelling analysis.
      To reduce this burden, pneumococcal conjugate vaccines (PCVs) have been demonstrated as a safe and effective preventative measure for pediatric use.
      From 2000 to 2009, countries began introducing the first-generation 7-valent PCV (PCV7) in national immunization programs (NIPs). Since late 2009, countries have implemented 10- and 13-valent PCVs (PCV10 and PCV13) in their NIPs due to the incremental 3 and 6 serotypes that these vaccines cover compared with PCV7, respectively. Currently, these PCVs have been extensively adopted in high-income countries (HICs) and many low- and middle-income countries (LMICs) with the support of the Global Alliance for Vaccines and Immunization.
      • Chen C.
      • Liceras F.C.
      • Flasche S.
      • et al.
      Effect and cost-effectiveness of pneumococcal conjugate vaccination: a global modelling analysis.
      Nevertheless, approximately 35 countries, primarily in Asia and Africa, have yet to include a PCV in their NIP.
      • Horn E.K.
      • Wasserman M.D.
      • Hall-Murray C.
      • Sings H.L.
      • Chapman R.
      • Farkouh R.A.
      Public health impact of pneumococcal conjugate vaccination: a review of measurement challenges.
      Furthermore, many low-income countries that have implemented a PCV program are transitioning out of Global Alliance for Vaccines and Immunization funding eligibility,
      Eligibility for GAVI support is determined by countries’ national income. GAVI.
      and they may eventually have to finance the vaccine out of their national healthcare budgets. In this context, cost-effectiveness analyses (CEAs) can inform decision makers on the efficient use of available resources to maximize health benefits.
      According to previous systematic reviews of PCV CEAs,
      • Wu D.B.
      • Chaiyakunapruk N.
      • Chong H.Y.
      • Beutels P.
      Choosing between 7-, 10- and 13-valent pneumococcal conjugate vaccines in childhood: a review of economic evaluations (2006-2014).
      ,
      • Saokaew S.
      • Rayanakorn A.
      • Wu D.B.
      • Chaiyakunapruk N.
      Cost effectiveness of pneumococcal vaccination in children in low- and middle-income countries: a systematic review.
      • Wang B.C.
      • Chaiyakunapruk N.
      • Zhu S.
      • et al.
      A systematic literature review of economic evaluations of pneumococcal conjugate vaccines in east and southeast Asia (2006-2019).
      • Zakiyah N.
      • Insani W.N.
      • Suwantika A.A.
      • van der Schans J.
      • Postma M.J.
      Pneumococcal vaccination for children in Asian countries: a systematic review of economic evaluation studies.
      most studies have found PCV10 and PCV13 to be cost-effective compared with no vaccination in a variety of settings. Nevertheless, these reviews provide only an overall descriptive summary of evidence from individual cost-effectiveness studies. Therefore, Crespo et al
      • Crespo C.
      • Monleon A.
      • Díaz W.
      • Ríos M.
      Comparative efficiency research (COMER): meta-analysis of cost-effectiveness studies.
      suggested a meta-analysis method of CEAs. This approach is now gathering recognition by the wider scientific community.
      • Bagepally B.S.
      • Gurav Y.K.
      • Anothaisintawee T.
      • Youngkong S.
      • Chaikledkaew U.
      • Thakkinstian A.
      Cost utility of sodium-glucose cotransporter 2 inhibitors in the treatment of metformin monotherapy failed type 2 diabetes patients: a systematic review and meta-analysis.
      • Haider S.
      • Chaikledkaew U.
      • Thavorncharoensap M.
      • Youngkong S.
      • Islam M.A.
      • Thakkinstian A.
      Systematic review and meta-analysis of cost-effectiveness of rotavirus vaccine in low-income and lower-middle-income countries.
      • Bagepally B.S.
      • Gurav Y.K.
      • Anothaisintawee T.
      • et al.
      Glucagon-like peptide 1 agonists for treatment of patients with type 2 diabetes who fail metformin monotherapy: systematic review and meta-analysis of economic evaluation studies.
      • Noparatayaporn P.
      • Thavorncharoensap M.
      • Bagepally B.S.
      • Thakkinstian A.
      Incremental net monetary benefit of bariatric surgery: systematic review and meta-analysis of cost-effectiveness evidences.
      • Chaiyakittisopon K.
      • Pattanaprateep O.
      • Ruenroengbun N.
      • et al.
      Evaluation of the cost-utility of phosphate binders as a treatment option for hyperphosphatemia in chronic kidney disease patients: a systematic review and meta-analysis of the economic evaluations.
      • Veettil S.K.
      • Harris J.
      • Syeed M.S.
      • et al.
      Incremental net monetary benefit of direct oral anticoagulants for the prevention of venous thromboembolism after total knee or hip replacement: a systematic review and meta-analysis.
      The evidence generated from a meta-analysis of PCV CEAs may be useful to decision makers, given that it provides (1) an overall summary of economic evidence quantitatively and (2) a summary of evidence stratified by country income level, study perspective, vaccine type, and inclusion of herd effects, to provide specific evidence for each group of studies. The World Health Organization (WHO) Immunization and Vaccine-Related Implementation Research Advisory Committee (March 2021) agrees that meta-analysis of CEAs is useful and could facilitate decision making in countries where context-specific CEAs are not available.
      Weekly epidemiological record, no 17, 2021, 96, 133-144, Meeting of the Immunization and Vaccine related Implementation Research Advisory Committee (IVIR-AC). World Health Organization.
      We conducted a systematic review and meta-analysis of CEAs by pooling incremental net benefit (INB) stratified by country income level, study perspective, and consideration of herd effects, to assess the cost-effectiveness of PCV10 and PCV13 compared with one another or with no vaccination in children. The objective of this analysis is to estimate the economic value of these vaccines to support evidence-based decision making, especially in LMICs where economic evidence is limited.

      Methods

      This systematic review and meta-analysis were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement,
      • Page M.J.
      • Moher D.
      • Bossuyt P.M.
      • et al.
      PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews.
      and the protocol was registered at PROSPERO (CRD42021237743) (Appendix Table 1 and Appendix 2 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2022.10.006).

      Search Strategy

      We conducted an updated search from January 2014 to May 2022 in PubMed, Embase, and Web of Science to identify additional studies published since the last search date of a previous systematic review conducted by Wu et al
      • Wu D.B.
      • Chaiyakunapruk N.
      • Chong H.Y.
      • Beutels P.
      Choosing between 7-, 10- and 13-valent pneumococcal conjugate vaccines in childhood: a review of economic evaluations (2006-2014).
      . In addition, we systematically searched in the Cost-Effective Analysis Registry by Tufts Medical Center, National Health Service Economic Evaluation Database, and EconLit from inception to May 2022, given that these databases were not searched in the review by Wu et al
      • Wu D.B.
      • Chaiyakunapruk N.
      • Chong H.Y.
      • Beutels P.
      Choosing between 7-, 10- and 13-valent pneumococcal conjugate vaccines in childhood: a review of economic evaluations (2006-2014).
      . We also hand-searched references of the included studies to identify any additional relevant studies. Search terms included pneumococcal vaccine, cost, cost analysis, cost-utility, cost-effectiveness, and economics (Appendix 3 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2022.10.006).

      Study Selection

      All identified titles and abstracts were screened, and full-text articles were reviewed independently by 2 researchers (S.S. and P.G.). Studies were included if they performed either a cost-effectiveness or cost-utility analysis of PCV13 or PCV10 compared with no vaccination or with each other in children. Studies were excluded if they were cost-minimization, cost-benefit, or budget impact analyses or if there were insufficient data for the meta-analysis to be performed. Studies comparing PCV7 with no vaccination or comparing PCV7 with PCV13 or PCV10 were considered outside the scope of this review. No language restriction was applied. Any disagreements were resolved by consulting with a third reviewer (N.C.).

      Data Extraction and Quality Assessment

      A standardized data extraction sheet was developed based on the Consolidated Health Economic Evaluation Reporting Standards checklist.
      • Husereau D.
      • Drummond M.
      • Petrou S.
      • et al.
      Consolidated health economic evaluation reporting standards (CHEERS)—explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force.
      Extracted data included characteristics of the intervention and comparator (ie, vaccine dosing schedule and price), consideration of herd effects, vaccine coverage, model type, time horizon, study perspective, outcomes, country income level, WHO region, and funding source. As per the World Bank classification of countries by income level,
      The world by income and region. The World Bank.
      countries included in studies were categorized into HICs and LMICs. The incremental cost-effectiveness ratio (ICER), incremental costs (ΔC), incremental effect (ΔE), their dispersion (standard deviation, standard error, or 95% confidence interval [CI]), and the willingness-to-pay (WTP) threshold of each study were also extracted. Scatterplots representing ΔC and ΔE of the probabilistic sensitivity analysis were also retrieved and extracted using WebPlotDigitizer software version 4.4 (https://automeris.io/WebPlotDigitizer).
      WebPlotDigitizer.
      If the data were not available, we contacted the authors of each study to request additional data.
      Risk of bias was assessed by 2 independent reviewers (S.S. and P.G.) using the modified Economic Evaluations Bias (ECOBIAS) tool.
      • Adarkwah C.C.
      • van Gils P.F.
      • Hiligsmann M.
      • Evers S.M.
      Risk of bias in model-based economic evaluations: the ECOBIAS checklist.
      Each item was graded as yes, partly, unclear, no, or not applicable. Nevertheless, we primarily considered 3 items, namely, limited sensitivity analysis bias, wrong model bias, and bias related to treatment effects, because they were identified as most relevant to the overall validity assessment and the study context.
      • Dilokthornsakul P.
      • Lan L.M.
      • Thakkinstian A.
      • Hutubessy R.
      • Lambach P.
      • Chaiyakunapruk N.
      Economic evaluation of seasonal influenza vaccination in elderly and healthcare workers: a systematic review and meta-analysis.
      Studies that were assessed as “yes” for all 3 items were classified as low risk of bias. Studies with 1 or more “partly/unclear” responses were categorized as having a moderate risk of bias, whereas studies with at least 1 response as “no” were classified as having a high risk of bias.

      Outcome of Interest

      The primary outcome of interest was INB of PCV10 and PCV13 vaccination in children compared with each other or with no vaccination, which was calculated using Eq. (1) or (2) below depending on the data reported in each study. The variance of each of the INBs was calculated using Eq. (3) or (4) below.
      • Crespo C.
      • Monleon A.
      • Díaz W.
      • Ríos M.
      Comparative efficiency research (COMER): meta-analysis of cost-effectiveness studies.
      ,
      • Bagepally B.S.
      • Chaikledkaew U.
      • Chaiyakunapruk N.
      • Attia J.
      • Thakkinstian A.
      Meta-analysis of economic evaluation studies: data harmonisation and methodological issues.
      INB=ΔE(KICER)
      (1)


      INB=(K×ΔE)ΔC
      (2)


      VarINB=K2σΔE2+σICER2
      (3)


      VarINB=K2σΔE2+σΔC22KρΔCΔE
      (4)


      K is the WTP threshold, ΔE and ΔC are the incremental effectiveness and cost, ICER is the incremental cost-effectiveness ratio, σ is the variance, and ρΔCΔE is the covariance between ΔC and ΔE. A positive INB indicates the intervention is cost-effective, whereas a negative INB indicates the intervention is not cost-effective.
      • Crespo C.
      • Monleon A.
      • Díaz W.
      • Ríos M.
      Comparative efficiency research (COMER): meta-analysis of cost-effectiveness studies.
      ,
      • Willan A.R.
      • Chen E.B.
      • Cook R.J.
      • Lin D.Y.
      Incremental net benefit in randomized clinical trials with quality-adjusted survival.

      Data Preparation

      Data were prepared according to 5 scenarios described in Appendix 4 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2022.10.006. INB and its variance were calculated accordingly. When variance was not available, we imputed it based on studies with similar characteristics using their relative value compared with the point estimate.
      • Bagepally B.S.
      • Gurav Y.K.
      • Anothaisintawee T.
      • Youngkong S.
      • Chaikledkaew U.
      • Thakkinstian A.
      Cost utility of sodium-glucose cotransporter 2 inhibitors in the treatment of metformin monotherapy failed type 2 diabetes patients: a systematic review and meta-analysis.
      ,
      • Bagepally B.S.
      • Gurav Y.K.
      • Anothaisintawee T.
      • et al.
      Glucagon-like peptide 1 agonists for treatment of patients with type 2 diabetes who fail metformin monotherapy: systematic review and meta-analysis of economic evaluation studies.
      All cost data including K, ΔC, ICER, their variances, and the WTP threshold in each currency were standardized by converting estimates to 2021 US dollars using consumer price index
      Consumer price index (2010 = 100). The World Bank.
      and purchasing power parity.
      PPP conversion factor, private consumption (LCU per international $). The World Bank.
      Currency conversion is presented in Appendix 4B in Supplemental Materials found at https://doi.org/10.1016/j.jval.2022.10.006. For the studies that did not report a WTP threshold, the WTP threshold was borrowed from other studies from the same country.

      Statistical Analysis

      Meta-analyses were conducted to pool the INBs across studies stratified by country income level (HICs and LMICs), perspective (societal or payer), and herd effects (with or without) using a random-effects model based on the DerSimonian and Laird method.
      • DerSimonian R.
      • Laird N.
      Meta-analysis in clinical trials.
      I2 statistics was applied to assess the heterogeneity. The heterogeneity was considered only if the I2 value was > 25%. A series of univariate meta-regressions with different covariates (ie, dosing schedule, vaccine price, outcome measures, and funding source) were performed to explore the source of heterogeneity. If the I2 decreased by > 50%, the covariate was deemed a potential source of heterogeneity. Publication bias was assessed using Egger’s test and a funnel plot. If funnel plot asymmetry was found, the sources of asymmetry were explored using a contour-enhanced funnel plot.
      • Lin L.
      • Chu H.
      Quantifying publication bias in meta-analysis.
      In addition, we performed a series of sensitivity analyses (1) excluding comparisons that did not report outcomes in quality-adjusted life-years, (2) excluding studies with missing variances, (3) imputing variances using absolute value borrowed from similar studies, (4) excluding studies with high or moderate risk of bias, and (5) pooling overall INBs across countries regardless of country income level. Analyses were performed using Microsoft Excel (Microsoft Corporation, 2018, Redmond, WA) and Stata version 17.0 (StataCorp 2021, College Station, TX.) and a 2-sided statistical test with a P value of ≤ .05 was considered statistically significant.

      Results

      Study Selection

      A total of 1520 studies were identified from databases and the reference list of the previous systematic review. After removal of duplicates, title and abstracts screening, and full-text review, 70 studies were included in this review (Fig. 1).
      Figure thumbnail gr1
      Figure 1PRISMA flow diagram.
      PRISMA indicates Preferred Reporting Items for Systematic Reviews and Meta-Analyses. NHS EED indicates National Institute for Health Research Economic Evaluation Database; PCV10, 10-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine.

      Study Characteristics

      Characteristics of included studies are presented in Table 1.
      • Ansaldi F.
      • Pugh S.
      • Amicizia D.
      • et al.
      Estimating the clinical and economic impact of switching from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Italy.
      • By A.
      • Sobocki P.
      • Forsgren A.
      • Silfverdal S.A.
      Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model.
      • Castiglia P.
      • Pradelli L.
      • Castagna S.
      • Freguglia V.
      • Palù G.
      • Esposito S.
      Overall effectiveness of pneumococcal conjugate vaccines: an economic analysis of PHiD-CV and PCV-13 in the immunization of infants in Italy.
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      • Delgleize E.
      • Leeuwenkamp O.
      • Theodorou E.
      • de Velde N.V.
      Cost-effectiveness analysis of routine pneumococcal vaccination in the UK: a comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model.
      • Díez-Domingo J.
      • Ridao-López M.
      • Gutiérrez-Gimeno M.V.
      • Puig-Barberá J.
      • Lluch-Rodrigo J.A.
      • Pastor-Villalba E.
      Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain).
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      • Gouveia M.
      • Fiorentino F.
      • Jesus G.
      • Costa J.
      • Borges M.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine in children in Portugal.
      • Juus E.
      • Oona M.
      • Tamm E.
      • et al.
      Cost-effectiveness of pneumococcal vaccines in Estonia.
      • Kim H.Y.
      • Park S.B.
      • Kang E.S.
      • Lee S.M.
      • Kim H.J.
      • Wasserman M.
      Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea.
      • Klok R.M.
      • Lindkvist R.M.
      • Ekelund M.
      • Farkouh R.A.
      • Strutton D.R.
      Cost-effectiveness of a 10- versus 13-valent pneumococcal conjugate vaccine in Denmark and Sweden.
      • Knerer G.
      • Ismaila A.
      • Pearce D.
      Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise.
      • Kuhlmann A.
      • von der Schulenburg J.G.
      Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany.
      • Lee K.K.C.
      • Wu D.B.C.
      • Topachevskyi O.
      • Delgleize E.
      • DeAntonio R.
      The health economic impact of universal infant vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine as compared with 13-valent pneumococcal conjugate vaccine in Hong Kong.
      • Lu C.Y.
      • Chung C.H.
      • Huang L.M.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine for children in Taiwan [published correction appears in Cost Eff Resour Alloc. 2021;19(1):30].
      • Newall A.T.
      • Creighton P.
      • Philp D.J.
      • Wood J.G.
      • MacIntyre C.R.
      The potential cost-effectiveness of infant pneumococcal vaccines in Australia.
      • Pugh S.
      • Wasserman M.
      • Moffatt M.
      • et al.
      Estimating the impact of switching from a lower to higher valent Pneumococcal Conjugate Vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis.
      • Robberstad B.
      • Frostad C.R.
      • Akselsen P.E.
      • Kværner K.J.
      • Berstad A.K.
      Economic evaluation of second generation pneumococcal conjugate vaccines in Norway.
      • Rozenbaum M.H.
      • Sanders E.A.
      • van Hoek A.J.
      • et al.
      Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines.
      • Saar I.
      • Posiuniene I.
      • Olbrecht J.
      • Simone B.
      • Leeuwenkamp O.
      • Van de Velde N.
      The cost-effectiveness of pneumococcal conjugate vaccination in a cohort of infants in Estonia.
      • Shiragami M.
      • Mizukami A.
      • Leeuwenkamp O.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine and 13-valent pneumococcal vaccine in Japanese children.
      • Strutton D.R.
      • Farkouh R.A.
      • Earnshaw S.R.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands.
      • Tyo K.R.
      • Rosen M.M.
      • Zeng W.
      • et al.
      Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines.
      • Varghese L.
      • Talbot L.
      • Govender A.
      • Zhang X.H.
      • Mungall B.A.
      A cost-effectiveness analysis of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the 13-valent pneumococcal conjugate vaccine (PCV13) for universal mass vaccination implementation in New Zealand.
      • Vemer P.
      • Postma M.J.
      A few years later: update of the cost-effectiveness of infant pneumococcal vaccination in Dutch children.
      • Vučina V.V.
      • Filipović S.K.
      • Kožnjak N.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Croatia.
      • Wilson M.
      • Wasserman M.
      • Jadavi T.
      • et al.
      Clinical and economic impact of a potential switch from 13-valent to 10-valent pneumococcal conjugate infant vaccination in Canada.
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      • Wu D.B.
      • Chang C.J.
      • Huang Y.C.
      • Wen Y.W.
      • Wu C.L.
      • Fann C.S.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine in Taiwan: a transmission dynamic modeling approach.
      • Zhang X.H.
      • Leeuwenkamp O.
      • Oh K.B.
      • Lee Y.E.
      • Kim C.M.
      Cost-effectiveness analysis of infant pneumococcal vaccination with PHiD-CV in Korea.
      • Aljunid S.
      • Maimaiti N.
      • Ahmed Z.
      • et al.
      Economic impact of pneumococcal protein-D conjugate vaccine (PHiD-CV) on the Malaysian national immunization programme.
      • Ayieko P.
      • Griffiths U.K.
      • Ndiritu M.
      • et al.
      Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children.
      • Bakır M.
      • Türel Ö.
      • Topachevskyi O.
      Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: a decision analytical model.
      • Castañeda-Orjuela C.
      • Alvis-Guzmán N.
      • Velandia-González M.
      • De la Hoz-Restrepo F.
      Cost-effectiveness of pneumococcal conjugate vaccines of 7, 10, and 13 valences in Colombian children.
      • Castañeda-Orjuela C.
      • De la Hoz-Restrepo F.
      How cost effective is switching universal vaccination from PCV10 to PCV13? A case study from a developing country.
      • Constenla D.O.
      Post-introduction economic evaluation of pneumococcal conjugate vaccination in Ecuador, Honduras, and Paraguay.
      • Dilokthornsakul P.
      • Kengkla K.
      • Saokaew S.
      • et al.
      An updated cost-effectiveness analysis of pneumococcal conjugate vaccine among children in Thailand.
      • Dorji K.
      • Phuntsho S.
      • Pempa
      • et al.
      Towards the introduction of pneumococcal conjugate vaccines in Bhutan: a cost-utility analysis to determine the optimal policy option.
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      • Gomez J.A.
      • Tirado J.C.
      • Navarro Rojas A.A.
      • Castrejon Alba M.M.
      • Topachevskyi O.
      Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru.
      • Gómez J.A.
      • Villaseñor-Sierra A.
      • Aguilar G.M.
      • Manjarrez R.C.
      • Cervantes-Apolinar M.Y.
      Estimación de la relación costo-efectividad de las vacunas neumocócicas conjugadas prevenar-13 y Synflorix®, Utilizadas en Los Programas de Vacunación de Población Infantil Mexicana [Estimation of the cost-effectiveness relationship of the pneumococcal conjugate vaccines prevenar-13 and Synflorix®, Used in the Vaccination Programs of the Mexican Infant Population].
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      • Kebede T.T.
      • Svensson M.
      • Addissie A.
      • Trollfors B.
      • Andersson R.
      Cost-effectiveness of childhood pneumococcal vaccination program in Ethiopia: results from a quasi-experimental evaluation.
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      • Kim S.Y.
      • Lee G.
      • Goldie S.J.
      Economic evaluation of pneumococcal conjugate vaccination in the Gambia.
      • Komakhidze T.
      • Hoestlandt C.
      • Dolakidze T.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Georgia.
      • Krishnamoorthy Y.
      • Eliyas S.K.
      • Nair N.P.
      • Sakthivel M.
      • Sarveswaran G.
      • Chinnakali P.
      Impact and cost effectiveness of pneumococcal conjugate vaccine in India.
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      • Marijam A.
      • Olbrecht J.
      • Ozakay A.
      • Eken V.
      • Meszaros K.
      Cost-effectiveness comparison of pneumococcal conjugate vaccines in Turkish children.
      • Maurer K.A.
      • Chen H.F.
      • Wagner A.L.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination for infants in China.
      • Mezones-Holguín E.
      • Bolaños-Díaz R.
      • Fiestas V.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccines in preventing pneumonia in Peruvian children.
      • Mezones-Holguin E.
      • Canelo-Aybar C.
      • Clark A.D.
      • et al.
      Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru.
      • Mo X.
      • Gai Tobe R.
      • Liu X.
      • Mori R.
      Cost-effectiveness and health benefits of pediatric 23-valent pneumococcal polysaccharide vaccine, 7-valent pneumococcal conjugate vaccine and forecasting 13-valent pneumococcal conjugate vaccine in China.
      • Ordóñez J.E.
      • Orozco J.J.
      Cost-effectiveness analysis of the available pneumococcal conjugated vaccines for children under five years in Colombia.
      • Perdrizet J.
      • Santana C.F.S.
      • Senna T.
      • et al.
      Cost-effectiveness analysis of replacing the 10-valent pneumococcal conjugate vaccine (PCV10) with the 13-valent pneumococcal conjugate vaccine (PCV13) in Brazil infants.
      • Pugh S.J.
      • Fletcher M.A.
      • Charos A.
      • Imekraz L.
      • Wasserman M.
      • Farkouh R.
      Cost-effectiveness of the pneumococcal conjugate vaccine (10- or 13-valent) versus no vaccination for a National Immunization Program in Tunisia or Algeria.
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      • Shafie A.A.
      • Ahmad N.
      • Naidoo J.
      • et al.
      Estimating the population health and economic impacts of introducing a pneumococcal conjugate vaccine in Malaysia - an economic evaluation.
      • Shen K.L.
      • Wasserman M.
      • Liu D.D.
      • et al.
      Estimating the cost-effectiveness of an infant 13-valent pneumococcal conjugate vaccine National Immunization Program in China.
      • Sibak M.
      • Moussa I.
      • El-Tantawy N.
      • et al.
      Cost-effectiveness analysis of the introduction of the pneumococcal conjugate vaccine (PCV-13) in the Egyptian National Immunization Program, 2013.
      • Sundaram N.
      • Chen C.
      • Yoong J.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia.
      • Urueña A.
      • Pippo T.
      • Betelu M.S.
      • et al.
      Cost-effectiveness analysis of the 10- and 13-valent pneumococcal conjugate vaccines in Argentina.
      • Wang X.J.
      • Saha A.
      • Zhang X.H.
      Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia.
      • Wasserman M.
      • Palacios M.G.
      • Grajales A.G.
      • et al.
      Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico.
      • Zhang X.H.
      • Nievera M.C.
      • Carlos J.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination with the pneumococcal polysaccharide NTHi protein D conjugate vaccine in the Philippines.
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      • Perdrizet J.
      • Horn E.K.
      • Nua W.
      • et al.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine (PCV13) versus lower-valent alternatives in Filipino infants.
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.
      • Wang C.
      • Su L.
      • Mu Q.
      • Gu X.
      • Guo X.
      • Wang X.
      Cost-effectiveness analysis of domestic 13-valent pneumococcal conjugate vaccine for children under 5 years of age in mainland China.
      • Kupek E.
      • Viertel I.
      Postintroduction study of cost-effectiveness of pneumococcal vaccine PCV10 from public sector Payer’s perspective in the State of Santa Catarina, Brazil.
      Most studies (N = 47) contributed to > 1 comparison because they presented results of > 1 vaccine comparison (ie, PCV13 vs PCV10, PCV13 vs no vaccination, PCV10 vs no vaccination), of both payer and societal perspectives, or of both the inclusion and exclusion of herd effects. As a result, data of 167 comparisons (n) were extracted from the 70 studies (N). Of them, 35% (n = 59) compared PCV13 with PCV10, 38% (n = 64) compared PCV13 with no vaccination, and 26% (n = 44) compared PCV10 with no vaccination. Approximately 35% of comparisons (n = 59) were from HICs
      • Ansaldi F.
      • Pugh S.
      • Amicizia D.
      • et al.
      Estimating the clinical and economic impact of switching from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Italy.
      • By A.
      • Sobocki P.
      • Forsgren A.
      • Silfverdal S.A.
      Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model.
      • Castiglia P.
      • Pradelli L.
      • Castagna S.
      • Freguglia V.
      • Palù G.
      • Esposito S.
      Overall effectiveness of pneumococcal conjugate vaccines: an economic analysis of PHiD-CV and PCV-13 in the immunization of infants in Italy.
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      • Delgleize E.
      • Leeuwenkamp O.
      • Theodorou E.
      • de Velde N.V.
      Cost-effectiveness analysis of routine pneumococcal vaccination in the UK: a comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model.
      • Díez-Domingo J.
      • Ridao-López M.
      • Gutiérrez-Gimeno M.V.
      • Puig-Barberá J.
      • Lluch-Rodrigo J.A.
      • Pastor-Villalba E.
      Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain).
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      • Gouveia M.
      • Fiorentino F.
      • Jesus G.
      • Costa J.
      • Borges M.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine in children in Portugal.
      • Juus E.
      • Oona M.
      • Tamm E.
      • et al.
      Cost-effectiveness of pneumococcal vaccines in Estonia.
      • Kim H.Y.
      • Park S.B.
      • Kang E.S.
      • Lee S.M.
      • Kim H.J.
      • Wasserman M.
      Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea.
      • Klok R.M.
      • Lindkvist R.M.
      • Ekelund M.
      • Farkouh R.A.
      • Strutton D.R.
      Cost-effectiveness of a 10- versus 13-valent pneumococcal conjugate vaccine in Denmark and Sweden.
      • Knerer G.
      • Ismaila A.
      • Pearce D.
      Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise.
      • Kuhlmann A.
      • von der Schulenburg J.G.
      Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany.
      • Lee K.K.C.
      • Wu D.B.C.
      • Topachevskyi O.
      • Delgleize E.
      • DeAntonio R.
      The health economic impact of universal infant vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine as compared with 13-valent pneumococcal conjugate vaccine in Hong Kong.
      • Lu C.Y.
      • Chung C.H.
      • Huang L.M.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine for children in Taiwan [published correction appears in Cost Eff Resour Alloc. 2021;19(1):30].
      • Newall A.T.
      • Creighton P.
      • Philp D.J.
      • Wood J.G.
      • MacIntyre C.R.
      The potential cost-effectiveness of infant pneumococcal vaccines in Australia.
      • Pugh S.
      • Wasserman M.
      • Moffatt M.
      • et al.
      Estimating the impact of switching from a lower to higher valent Pneumococcal Conjugate Vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis.
      • Robberstad B.
      • Frostad C.R.
      • Akselsen P.E.
      • Kværner K.J.
      • Berstad A.K.
      Economic evaluation of second generation pneumococcal conjugate vaccines in Norway.
      • Rozenbaum M.H.
      • Sanders E.A.
      • van Hoek A.J.
      • et al.
      Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines.
      • Saar I.
      • Posiuniene I.
      • Olbrecht J.
      • Simone B.
      • Leeuwenkamp O.
      • Van de Velde N.
      The cost-effectiveness of pneumococcal conjugate vaccination in a cohort of infants in Estonia.
      • Shiragami M.
      • Mizukami A.
      • Leeuwenkamp O.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine and 13-valent pneumococcal vaccine in Japanese children.
      • Strutton D.R.
      • Farkouh R.A.
      • Earnshaw S.R.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands.
      • Tyo K.R.
      • Rosen M.M.
      • Zeng W.
      • et al.
      Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines.
      • Varghese L.
      • Talbot L.
      • Govender A.
      • Zhang X.H.
      • Mungall B.A.
      A cost-effectiveness analysis of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the 13-valent pneumococcal conjugate vaccine (PCV13) for universal mass vaccination implementation in New Zealand.
      • Vemer P.
      • Postma M.J.
      A few years later: update of the cost-effectiveness of infant pneumococcal vaccination in Dutch children.
      • Vučina V.V.
      • Filipović S.K.
      • Kožnjak N.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Croatia.
      • Wilson M.
      • Wasserman M.
      • Jadavi T.
      • et al.
      Clinical and economic impact of a potential switch from 13-valent to 10-valent pneumococcal conjugate infant vaccination in Canada.
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      • Wu D.B.
      • Chang C.J.
      • Huang Y.C.
      • Wen Y.W.
      • Wu C.L.
      • Fann C.S.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine in Taiwan: a transmission dynamic modeling approach.
      • Zhang X.H.
      • Leeuwenkamp O.
      • Oh K.B.
      • Lee Y.E.
      • Kim C.M.
      Cost-effectiveness analysis of infant pneumococcal vaccination with PHiD-CV in Korea.
      and 65% (n = 108) were from LMICs.
      • Pugh S.
      • Wasserman M.
      • Moffatt M.
      • et al.
      Estimating the impact of switching from a lower to higher valent Pneumococcal Conjugate Vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis.
      ,
      • Strutton D.R.
      • Farkouh R.A.
      • Earnshaw S.R.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands.
      ,
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      ,
      • Aljunid S.
      • Maimaiti N.
      • Ahmed Z.
      • et al.
      Economic impact of pneumococcal protein-D conjugate vaccine (PHiD-CV) on the Malaysian national immunization programme.
      • Ayieko P.
      • Griffiths U.K.
      • Ndiritu M.
      • et al.
      Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children.
      • Bakır M.
      • Türel Ö.
      • Topachevskyi O.
      Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: a decision analytical model.
      • Castañeda-Orjuela C.
      • Alvis-Guzmán N.
      • Velandia-González M.
      • De la Hoz-Restrepo F.
      Cost-effectiveness of pneumococcal conjugate vaccines of 7, 10, and 13 valences in Colombian children.
      • Castañeda-Orjuela C.
      • De la Hoz-Restrepo F.
      How cost effective is switching universal vaccination from PCV10 to PCV13? A case study from a developing country.
      • Constenla D.O.
      Post-introduction economic evaluation of pneumococcal conjugate vaccination in Ecuador, Honduras, and Paraguay.
      • Dilokthornsakul P.
      • Kengkla K.
      • Saokaew S.
      • et al.
      An updated cost-effectiveness analysis of pneumococcal conjugate vaccine among children in Thailand.
      • Dorji K.
      • Phuntsho S.
      • Pempa
      • et al.
      Towards the introduction of pneumococcal conjugate vaccines in Bhutan: a cost-utility analysis to determine the optimal policy option.
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      • Gomez J.A.
      • Tirado J.C.
      • Navarro Rojas A.A.
      • Castrejon Alba M.M.
      • Topachevskyi O.
      Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru.
      • Gómez J.A.
      • Villaseñor-Sierra A.
      • Aguilar G.M.
      • Manjarrez R.C.
      • Cervantes-Apolinar M.Y.
      Estimación de la relación costo-efectividad de las vacunas neumocócicas conjugadas prevenar-13 y Synflorix®, Utilizadas en Los Programas de Vacunación de Población Infantil Mexicana [Estimation of the cost-effectiveness relationship of the pneumococcal conjugate vaccines prevenar-13 and Synflorix®, Used in the Vaccination Programs of the Mexican Infant Population].
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      • Kebede T.T.
      • Svensson M.
      • Addissie A.
      • Trollfors B.
      • Andersson R.
      Cost-effectiveness of childhood pneumococcal vaccination program in Ethiopia: results from a quasi-experimental evaluation.
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      • Kim S.Y.
      • Lee G.
      • Goldie S.J.
      Economic evaluation of pneumococcal conjugate vaccination in the Gambia.
      • Komakhidze T.
      • Hoestlandt C.
      • Dolakidze T.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Georgia.
      • Krishnamoorthy Y.
      • Eliyas S.K.
      • Nair N.P.
      • Sakthivel M.
      • Sarveswaran G.
      • Chinnakali P.
      Impact and cost effectiveness of pneumococcal conjugate vaccine in India.
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      • Marijam A.
      • Olbrecht J.
      • Ozakay A.
      • Eken V.
      • Meszaros K.
      Cost-effectiveness comparison of pneumococcal conjugate vaccines in Turkish children.
      • Maurer K.A.
      • Chen H.F.
      • Wagner A.L.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination for infants in China.
      • Mezones-Holguín E.
      • Bolaños-Díaz R.
      • Fiestas V.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccines in preventing pneumonia in Peruvian children.
      • Mezones-Holguin E.
      • Canelo-Aybar C.
      • Clark A.D.
      • et al.
      Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru.
      • Mo X.
      • Gai Tobe R.
      • Liu X.
      • Mori R.
      Cost-effectiveness and health benefits of pediatric 23-valent pneumococcal polysaccharide vaccine, 7-valent pneumococcal conjugate vaccine and forecasting 13-valent pneumococcal conjugate vaccine in China.
      • Ordóñez J.E.
      • Orozco J.J.
      Cost-effectiveness analysis of the available pneumococcal conjugated vaccines for children under five years in Colombia.
      • Perdrizet J.
      • Santana C.F.S.
      • Senna T.
      • et al.
      Cost-effectiveness analysis of replacing the 10-valent pneumococcal conjugate vaccine (PCV10) with the 13-valent pneumococcal conjugate vaccine (PCV13) in Brazil infants.
      • Pugh S.J.
      • Fletcher M.A.
      • Charos A.
      • Imekraz L.
      • Wasserman M.
      • Farkouh R.
      Cost-effectiveness of the pneumococcal conjugate vaccine (10- or 13-valent) versus no vaccination for a National Immunization Program in Tunisia or Algeria.
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      • Shafie A.A.
      • Ahmad N.
      • Naidoo J.
      • et al.
      Estimating the population health and economic impacts of introducing a pneumococcal conjugate vaccine in Malaysia - an economic evaluation.
      • Shen K.L.
      • Wasserman M.
      • Liu D.D.
      • et al.
      Estimating the cost-effectiveness of an infant 13-valent pneumococcal conjugate vaccine National Immunization Program in China.
      • Sibak M.
      • Moussa I.
      • El-Tantawy N.
      • et al.
      Cost-effectiveness analysis of the introduction of the pneumococcal conjugate vaccine (PCV-13) in the Egyptian National Immunization Program, 2013.
      • Sundaram N.
      • Chen C.
      • Yoong J.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia.
      • Urueña A.
      • Pippo T.
      • Betelu M.S.
      • et al.
      Cost-effectiveness analysis of the 10- and 13-valent pneumococcal conjugate vaccines in Argentina.
      • Wang X.J.
      • Saha A.
      • Zhang X.H.
      Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia.
      • Wasserman M.
      • Palacios M.G.
      • Grajales A.G.
      • et al.
      Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico.
      • Zhang X.H.
      • Nievera M.C.
      • Carlos J.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination with the pneumococcal polysaccharide NTHi protein D conjugate vaccine in the Philippines.
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      • Perdrizet J.
      • Horn E.K.
      • Nua W.
      • et al.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine (PCV13) versus lower-valent alternatives in Filipino infants.
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.
      • Wang C.
      • Su L.
      • Mu Q.
      • Gu X.
      • Guo X.
      • Wang X.
      Cost-effectiveness analysis of domestic 13-valent pneumococcal conjugate vaccine for children under 5 years of age in mainland China.
      Most of the comparisons (56%, n = 94) were performed from a payer perspective,
      • Ansaldi F.
      • Pugh S.
      • Amicizia D.
      • et al.
      Estimating the clinical and economic impact of switching from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Italy.
      ,
      • Castiglia P.
      • Pradelli L.
      • Castagna S.
      • Freguglia V.
      • Palù G.
      • Esposito S.
      Overall effectiveness of pneumococcal conjugate vaccines: an economic analysis of PHiD-CV and PCV-13 in the immunization of infants in Italy.
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      • Delgleize E.
      • Leeuwenkamp O.
      • Theodorou E.
      • de Velde N.V.
      Cost-effectiveness analysis of routine pneumococcal vaccination in the UK: a comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model.
      • Díez-Domingo J.
      • Ridao-López M.
      • Gutiérrez-Gimeno M.V.
      • Puig-Barberá J.
      • Lluch-Rodrigo J.A.
      • Pastor-Villalba E.
      Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain).
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      ,
      • Klok R.M.
      • Lindkvist R.M.
      • Ekelund M.
      • Farkouh R.A.
      • Strutton D.R.
      Cost-effectiveness of a 10- versus 13-valent pneumococcal conjugate vaccine in Denmark and Sweden.
      ,
      • Kuhlmann A.
      • von der Schulenburg J.G.
      Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany.
      • Lee K.K.C.
      • Wu D.B.C.
      • Topachevskyi O.
      • Delgleize E.
      • DeAntonio R.
      The health economic impact of universal infant vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine as compared with 13-valent pneumococcal conjugate vaccine in Hong Kong.
      • Lu C.Y.
      • Chung C.H.
      • Huang L.M.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine for children in Taiwan [published correction appears in Cost Eff Resour Alloc. 2021;19(1):30].
      • Newall A.T.
      • Creighton P.
      • Philp D.J.
      • Wood J.G.
      • MacIntyre C.R.
      The potential cost-effectiveness of infant pneumococcal vaccines in Australia.
      • Pugh S.
      • Wasserman M.
      • Moffatt M.
      • et al.
      Estimating the impact of switching from a lower to higher valent Pneumococcal Conjugate Vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis.
      ,
      • Saar I.
      • Posiuniene I.
      • Olbrecht J.
      • Simone B.
      • Leeuwenkamp O.
      • Van de Velde N.
      The cost-effectiveness of pneumococcal conjugate vaccination in a cohort of infants in Estonia.
      ,
      • Strutton D.R.
      • Farkouh R.A.
      • Earnshaw S.R.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands.
      • Tyo K.R.
      • Rosen M.M.
      • Zeng W.
      • et al.
      Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines.
      • Varghese L.
      • Talbot L.
      • Govender A.
      • Zhang X.H.
      • Mungall B.A.
      A cost-effectiveness analysis of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the 13-valent pneumococcal conjugate vaccine (PCV13) for universal mass vaccination implementation in New Zealand.
      ,
      • Vučina V.V.
      • Filipović S.K.
      • Kožnjak N.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Croatia.
      • Wilson M.
      • Wasserman M.
      • Jadavi T.
      • et al.
      Clinical and economic impact of a potential switch from 13-valent to 10-valent pneumococcal conjugate infant vaccination in Canada.
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      • Wu D.B.
      • Chang C.J.
      • Huang Y.C.
      • Wen Y.W.
      • Wu C.L.
      • Fann C.S.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine in Taiwan: a transmission dynamic modeling approach.
      • Zhang X.H.
      • Leeuwenkamp O.
      • Oh K.B.
      • Lee Y.E.
      • Kim C.M.
      Cost-effectiveness analysis of infant pneumococcal vaccination with PHiD-CV in Korea.
      • Aljunid S.
      • Maimaiti N.
      • Ahmed Z.
      • et al.
      Economic impact of pneumococcal protein-D conjugate vaccine (PHiD-CV) on the Malaysian national immunization programme.
      ,
      • Bakır M.
      • Türel Ö.
      • Topachevskyi O.
      Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: a decision analytical model.
      ,
      • Castañeda-Orjuela C.
      • De la Hoz-Restrepo F.
      How cost effective is switching universal vaccination from PCV10 to PCV13? A case study from a developing country.
      ,
      • Dorji K.
      • Phuntsho S.
      • Pempa
      • et al.
      Towards the introduction of pneumococcal conjugate vaccines in Bhutan: a cost-utility analysis to determine the optimal policy option.
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      • Gomez J.A.
      • Tirado J.C.
      • Navarro Rojas A.A.
      • Castrejon Alba M.M.
      • Topachevskyi O.
      Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru.
      ,
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      ,
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      ,
      • Komakhidze T.
      • Hoestlandt C.
      • Dolakidze T.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Georgia.
      ,
      • Krishnamoorthy Y.
      • Eliyas S.K.
      • Nair N.P.
      • Sakthivel M.
      • Sarveswaran G.
      • Chinnakali P.
      Impact and cost effectiveness of pneumococcal conjugate vaccine in India.
      ,
      • Marijam A.
      • Olbrecht J.
      • Ozakay A.
      • Eken V.
      • Meszaros K.
      Cost-effectiveness comparison of pneumococcal conjugate vaccines in Turkish children.
      ,
      • Mezones-Holguín E.
      • Bolaños-Díaz R.
      • Fiestas V.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccines in preventing pneumonia in Peruvian children.
      ,
      • Mezones-Holguin E.
      • Canelo-Aybar C.
      • Clark A.D.
      • et al.
      Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru.
      ,
      • Ordóñez J.E.
      • Orozco J.J.
      Cost-effectiveness analysis of the available pneumococcal conjugated vaccines for children under five years in Colombia.
      • Perdrizet J.
      • Santana C.F.S.
      • Senna T.
      • et al.
      Cost-effectiveness analysis of replacing the 10-valent pneumococcal conjugate vaccine (PCV10) with the 13-valent pneumococcal conjugate vaccine (PCV13) in Brazil infants.
      • Pugh S.J.
      • Fletcher M.A.
      • Charos A.
      • Imekraz L.
      • Wasserman M.
      • Farkouh R.
      Cost-effectiveness of the pneumococcal conjugate vaccine (10- or 13-valent) versus no vaccination for a National Immunization Program in Tunisia or Algeria.
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      ,
      • Shen K.L.
      • Wasserman M.
      • Liu D.D.
      • et al.
      Estimating the cost-effectiveness of an infant 13-valent pneumococcal conjugate vaccine National Immunization Program in China.
      ,
      • Urueña A.
      • Pippo T.
      • Betelu M.S.
      • et al.
      Cost-effectiveness analysis of the 10- and 13-valent pneumococcal conjugate vaccines in Argentina.
      • Wang X.J.
      • Saha A.
      • Zhang X.H.
      Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia.
      • Wasserman M.
      • Palacios M.G.
      • Grajales A.G.
      • et al.
      Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico.
      • Zhang X.H.
      • Nievera M.C.
      • Carlos J.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination with the pneumococcal polysaccharide NTHi protein D conjugate vaccine in the Philippines.
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      • Perdrizet J.
      • Horn E.K.
      • Nua W.
      • et al.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine (PCV13) versus lower-valent alternatives in Filipino infants.
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.
      ,
      • Kupek E.
      • Viertel I.
      Postintroduction study of cost-effectiveness of pneumococcal vaccine PCV10 from public sector Payer’s perspective in the State of Santa Catarina, Brazil.
      whereas 42% (n = 70) incorporated a societal perspective,
      • By A.
      • Sobocki P.
      • Forsgren A.
      • Silfverdal S.A.
      Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model.
      ,
      • Gouveia M.
      • Fiorentino F.
      • Jesus G.
      • Costa J.
      • Borges M.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine in children in Portugal.
      ,
      • Knerer G.
      • Ismaila A.
      • Pearce D.
      Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise.
      ,
      • Kuhlmann A.
      • von der Schulenburg J.G.
      Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany.
      ,
      • Robberstad B.
      • Frostad C.R.
      • Akselsen P.E.
      • Kværner K.J.
      • Berstad A.K.
      Economic evaluation of second generation pneumococcal conjugate vaccines in Norway.
      ,
      • Rozenbaum M.H.
      • Sanders E.A.
      • van Hoek A.J.
      • et al.
      Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines.
      ,
      • Shiragami M.
      • Mizukami A.
      • Leeuwenkamp O.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine and 13-valent pneumococcal vaccine in Japanese children.
      ,
      • Vemer P.
      • Postma M.J.
      A few years later: update of the cost-effectiveness of infant pneumococcal vaccination in Dutch children.
      ,
      • Vučina V.V.
      • Filipović S.K.
      • Kožnjak N.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Croatia.
      ,
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      ,
      • Ayieko P.
      • Griffiths U.K.
      • Ndiritu M.
      • et al.
      Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children.
      ,
      • Castañeda-Orjuela C.
      • Alvis-Guzmán N.
      • Velandia-González M.
      • De la Hoz-Restrepo F.
      Cost-effectiveness of pneumococcal conjugate vaccines of 7, 10, and 13 valences in Colombian children.
      ,
      • Constenla D.O.
      Post-introduction economic evaluation of pneumococcal conjugate vaccination in Ecuador, Honduras, and Paraguay.
      ,
      • Dilokthornsakul P.
      • Kengkla K.
      • Saokaew S.
      • et al.
      An updated cost-effectiveness analysis of pneumococcal conjugate vaccine among children in Thailand.
      ,
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      ,
      • Gómez J.A.
      • Villaseñor-Sierra A.
      • Aguilar G.M.
      • Manjarrez R.C.
      • Cervantes-Apolinar M.Y.
      Estimación de la relación costo-efectividad de las vacunas neumocócicas conjugadas prevenar-13 y Synflorix®, Utilizadas en Los Programas de Vacunación de Población Infantil Mexicana [Estimation of the cost-effectiveness relationship of the pneumococcal conjugate vaccines prevenar-13 and Synflorix®, Used in the Vaccination Programs of the Mexican Infant Population].
      ,
      • Kebede T.T.
      • Svensson M.
      • Addissie A.
      • Trollfors B.
      • Andersson R.
      Cost-effectiveness of childhood pneumococcal vaccination program in Ethiopia: results from a quasi-experimental evaluation.
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      • Kim S.Y.
      • Lee G.
      • Goldie S.J.
      Economic evaluation of pneumococcal conjugate vaccination in the Gambia.
      ,
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      ,
      • Maurer K.A.
      • Chen H.F.
      • Wagner A.L.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination for infants in China.
      ,
      • Mo X.
      • Gai Tobe R.
      • Liu X.
      • Mori R.
      Cost-effectiveness and health benefits of pediatric 23-valent pneumococcal polysaccharide vaccine, 7-valent pneumococcal conjugate vaccine and forecasting 13-valent pneumococcal conjugate vaccine in China.
      ,
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      ,
      • Shafie A.A.
      • Ahmad N.
      • Naidoo J.
      • et al.
      Estimating the population health and economic impacts of introducing a pneumococcal conjugate vaccine in Malaysia - an economic evaluation.
      ,
      • Sundaram N.
      • Chen C.
      • Yoong J.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia.
      ,
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      ,
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.
      ,
      • Wang C.
      • Su L.
      • Mu Q.
      • Gu X.
      • Guo X.
      • Wang X.
      Cost-effectiveness analysis of domestic 13-valent pneumococcal conjugate vaccine for children under 5 years of age in mainland China.
      and 2% (n = 3) did not report the perspective.
      • Juus E.
      • Oona M.
      • Tamm E.
      • et al.
      Cost-effectiveness of pneumococcal vaccines in Estonia.
      ,
      • Kim H.Y.
      • Park S.B.
      • Kang E.S.
      • Lee S.M.
      • Kim H.J.
      • Wasserman M.
      Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea.
      More than half of the 167 total comparisons (60%, n = 101) reported inclusion of herd effects as part of the economic model,
      • Ansaldi F.
      • Pugh S.
      • Amicizia D.
      • et al.
      Estimating the clinical and economic impact of switching from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Italy.
      • By A.
      • Sobocki P.
      • Forsgren A.
      • Silfverdal S.A.
      Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model.
      • Castiglia P.
      • Pradelli L.
      • Castagna S.
      • Freguglia V.
      • Palù G.
      • Esposito S.
      Overall effectiveness of pneumococcal conjugate vaccines: an economic analysis of PHiD-CV and PCV-13 in the immunization of infants in Italy.
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      • Delgleize E.
      • Leeuwenkamp O.
      • Theodorou E.
      • de Velde N.V.
      Cost-effectiveness analysis of routine pneumococcal vaccination in the UK: a comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model.
      • Díez-Domingo J.
      • Ridao-López M.
      • Gutiérrez-Gimeno M.V.
      • Puig-Barberá J.
      • Lluch-Rodrigo J.A.
      • Pastor-Villalba E.
      Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain).
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      • Gouveia M.
      • Fiorentino F.
      • Jesus G.
      • Costa J.
      • Borges M.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine in children in Portugal.
      ,
      • Kim H.Y.
      • Park S.B.
      • Kang E.S.
      • Lee S.M.
      • Kim H.J.
      • Wasserman M.
      Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea.
      • Klok R.M.
      • Lindkvist R.M.
      • Ekelund M.
      • Farkouh R.A.
      • Strutton D.R.
      Cost-effectiveness of a 10- versus 13-valent pneumococcal conjugate vaccine in Denmark and Sweden.
      • Knerer G.
      • Ismaila A.
      • Pearce D.
      Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise.
      ,
      • Aljunid S.
      • Maimaiti N.
      • Ahmed Z.
      • et al.
      Economic impact of pneumococcal protein-D conjugate vaccine (PHiD-CV) on the Malaysian national immunization programme.
      ,
      • Dorji K.
      • Phuntsho S.
      • Pempa
      • et al.
      Towards the introduction of pneumococcal conjugate vaccines in Bhutan: a cost-utility analysis to determine the optimal policy option.
      ,
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      ,
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      ,
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      ,
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      ,
      • Wasserman M.
      • Palacios M.G.
      • Grajales A.G.
      • et al.
      Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico.
      ,
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      ,
      • Perdrizet J.
      • Horn E.K.
      • Nua W.
      • et al.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine (PCV13) versus lower-valent alternatives in Filipino infants.
      ,
      • Wang C.
      • Su L.
      • Mu Q.
      • Gu X.
      • Guo X.
      • Wang X.
      Cost-effectiveness analysis of domestic 13-valent pneumococcal conjugate vaccine for children under 5 years of age in mainland China.
      and 39% (n = 64) did not include herd effects,
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      ,
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      ,
      • Lu C.Y.
      • Chung C.H.
      • Huang L.M.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine for children in Taiwan [published correction appears in Cost Eff Resour Alloc. 2021;19(1):30].
      ,
      • Shiragami M.
      • Mizukami A.
      • Leeuwenkamp O.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine and 13-valent pneumococcal vaccine in Japanese children.
      ,
      • Varghese L.
      • Talbot L.
      • Govender A.
      • Zhang X.H.
      • Mungall B.A.
      A cost-effectiveness analysis of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the 13-valent pneumococcal conjugate vaccine (PCV13) for universal mass vaccination implementation in New Zealand.
      ,
      • Vemer P.
      • Postma M.J.
      A few years later: update of the cost-effectiveness of infant pneumococcal vaccination in Dutch children.
      ,
      • Zhang X.H.
      • Leeuwenkamp O.
      • Oh K.B.
      • Lee Y.E.
      • Kim C.M.
      Cost-effectiveness analysis of infant pneumococcal vaccination with PHiD-CV in Korea.
      ,
      • Ayieko P.
      • Griffiths U.K.
      • Ndiritu M.
      • et al.
      Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children.
      • Bakır M.
      • Türel Ö.
      • Topachevskyi O.
      Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: a decision analytical model.
      • Castañeda-Orjuela C.
      • Alvis-Guzmán N.
      • Velandia-González M.
      • De la Hoz-Restrepo F.
      Cost-effectiveness of pneumococcal conjugate vaccines of 7, 10, and 13 valences in Colombian children.
      • Castañeda-Orjuela C.
      • De la Hoz-Restrepo F.
      How cost effective is switching universal vaccination from PCV10 to PCV13? A case study from a developing country.
      • Constenla D.O.
      Post-introduction economic evaluation of pneumococcal conjugate vaccination in Ecuador, Honduras, and Paraguay.
      • Dilokthornsakul P.
      • Kengkla K.
      • Saokaew S.
      • et al.
      An updated cost-effectiveness analysis of pneumococcal conjugate vaccine among children in Thailand.
      ,
      • Gomez J.A.
      • Tirado J.C.
      • Navarro Rojas A.A.
      • Castrejon Alba M.M.
      • Topachevskyi O.
      Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru.
      • Gómez J.A.
      • Villaseñor-Sierra A.
      • Aguilar G.M.
      • Manjarrez R.C.
      • Cervantes-Apolinar M.Y.
      Estimación de la relación costo-efectividad de las vacunas neumocócicas conjugadas prevenar-13 y Synflorix®, Utilizadas en Los Programas de Vacunación de Población Infantil Mexicana [Estimation of the cost-effectiveness relationship of the pneumococcal conjugate vaccines prevenar-13 and Synflorix®, Used in the Vaccination Programs of the Mexican Infant Population].
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      • Kebede T.T.
      • Svensson M.
      • Addissie A.
      • Trollfors B.
      • Andersson R.
      Cost-effectiveness of childhood pneumococcal vaccination program in Ethiopia: results from a quasi-experimental evaluation.
      ,
      • Kim S.Y.
      • Lee G.
      • Goldie S.J.
      Economic evaluation of pneumococcal conjugate vaccination in the Gambia.
      ,
      • Krishnamoorthy Y.
      • Eliyas S.K.
      • Nair N.P.
      • Sakthivel M.
      • Sarveswaran G.
      • Chinnakali P.
      Impact and cost effectiveness of pneumococcal conjugate vaccine in India.
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      • Marijam A.
      • Olbrecht J.
      • Ozakay A.
      • Eken V.
      • Meszaros K.
      Cost-effectiveness comparison of pneumococcal conjugate vaccines in Turkish children.
      • Maurer K.A.
      • Chen H.F.
      • Wagner A.L.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination for infants in China.
      • Mezones-Holguín E.
      • Bolaños-Díaz R.
      • Fiestas V.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccines in preventing pneumonia in Peruvian children.
      • Mezones-Holguin E.
      • Canelo-Aybar C.
      • Clark A.D.
      • et al.
      Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru.
      ,
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      ,
      • Shen K.L.
      • Wasserman M.
      • Liu D.D.
      • et al.
      Estimating the cost-effectiveness of an infant 13-valent pneumococcal conjugate vaccine National Immunization Program in China.
      ,
      • Sundaram N.
      • Chen C.
      • Yoong J.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia.
      • Urueña A.
      • Pippo T.
      • Betelu M.S.
      • et al.
      Cost-effectiveness analysis of the 10- and 13-valent pneumococcal conjugate vaccines in Argentina.
      • Wang X.J.
      • Saha A.
      • Zhang X.H.
      Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia.
      ,
      • Zhang X.H.
      • Nievera M.C.
      • Carlos J.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination with the pneumococcal polysaccharide NTHi protein D conjugate vaccine in the Philippines.
      ,
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      ,
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.
      ,
      • Kupek E.
      • Viertel I.
      Postintroduction study of cost-effectiveness of pneumococcal vaccine PCV10 from public sector Payer’s perspective in the State of Santa Catarina, Brazil.
      whereas 1% (n = 2) did not indicate whether herd effects were included.
      • Juus E.
      • Oona M.
      • Tamm E.
      • et al.
      Cost-effectiveness of pneumococcal vaccines in Estonia.
      Table 1Study characteristics of included studies.
      Author (year)CountryCountry income levelCurrency (year)ThresholdGDP-based WTPModeling approachTime horizonDiscount ratePerspectiveComparisonsInclusion of herd effect in base case analysisCEA/CUA (outcome measure)Funding source
      Chuck et al (2010)
      • Chuck A.W.
      • Jacobs P.
      • Tyrrell G.
      • Kellner J.D.
      Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines.
      CanadaHighCAD (2008)NRNRDecision analytic1 yearNRNRPCV10 vs PCV13Considered bothCUA (QALY)Wyeth
      Rozenbaum et al(2010)
      • Rozenbaum M.H.
      • Sanders E.A.
      • van Hoek A.J.
      • et al.
      Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines.
      The NetherlandsHighEUR50 000NoDecision analytic5 years1.5, 4
      Outcome measure and cost were discounted at a rate of 1.5% and 4%, respectively.
      SocietalPCV10 vs NoV

      PCV13 vs NoV
      YesCUA (QALY)Wyeth
      Kim et al(2010)
      • Kim S.Y.
      • Lee G.
      • Goldie S.J.
      Economic evaluation of pneumococcal conjugate vaccination in the Gambia.
      GambiaLMICUSD (2005)1080YesMarkov5 years3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCEA (DALY)Bill & Melinda Gates foundation
      Newall et al (2011)
      • Newall A.T.
      • Creighton P.
      • Philp D.J.
      • Wood J.G.
      • MacIntyre C.R.
      The potential cost-effectiveness of infant pneumococcal vaccines in Australia.
      AustraliaHighAUD (2009)50 000NoDecision analyticLifetime5PayerPCV10 vs NoV

      PCV13 vs NoV
      YesCEA (QALY)GSK
      Robberstad et al (2011)
      • Robberstad B.
      • Frostad C.R.
      • Akselsen P.E.
      • Kværner K.J.
      • Berstad A.K.
      Economic evaluation of second generation pneumococcal conjugate vaccines in Norway.
      NorwayHighNOK (2009)500 000NoMarkovLifetime4SocietalPCV10 vs PCV13YesCUA (QALY)GSK
      Tyo et al (2011)
      • Tyo K.R.
      • Rosen M.M.
      • Zeng W.
      • et al.
      Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines.
      SingaporeHighUSD (2010)NRYesMarkov5 years3PayerPCV10 vs NoV

      PCV13 vs NoV
      YesCUA (QALY)Ministry of Health
      Urue˜na et al (2011)
      • Urueña A.
      • Pippo T.
      • Betelu M.S.
      • et al.
      Cost-effectiveness analysis of the 10- and 13-valent pneumococcal conjugate vaccines in Argentina.
      ArgentinaLMICUSD (2009)22 098YesMarkov5 years3Payer, SocietalPCV13 vs PCV10NoCEA (DALY)None
      Díez-Domingo et al (2011)
      • Díez-Domingo J.
      • Ridao-López M.
      • Gutiérrez-Gimeno M.V.
      • Puig-Barberá J.
      • Lluch-Rodrigo J.A.
      • Pastor-Villalba E.
      Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain).
      SpainHighEuros (2009)30 000NoDecision analyticLifetime3PayerPCV13 vs NoVYesCUA (QALY)Pfizer
      Strutton et al (2011)
      • Strutton D.R.
      • Farkouh R.A.
      • Earnshaw S.R.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands.
      GermanyHighEuros (2008)50 000YesDecision analytic1 year5PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      GreeceLMICEuros (2008)50 000Yes3PCV13 vs PCV10
      The NetherlandsHighEuros (2008)50 000Yes2PCV13 vs PCV10
      Sartori et al (2012)
      • Sartori A.M.
      • de Soárez P.C.
      • Novaes H.M.
      Cost-effectiveness of introducing the 10-valent pneumococcal conjugate vaccine into the universal immunisation of infants in Brazil.
      BrazilLMICBRL (2004)32 076YesDecision analytic5 years3Societal, PayerPCV10 vs NoVNoCEA (DALY)Ministry of Health
      Earnshaw et al (2012)
      • Earnshaw S.R.
      • McDade C.L.
      • Zanotti G.
      • Farkouh R.A.
      • Strutton D.
      Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada.
      CanadaHighCAD (2010)50 000YesDecision analyticLifetimeNRPayerPCV13 vs PCV10Yes (PCV13)

      No (PCV10)
      CUA (QALY)Pfizer
      By et al (2012)
      • By A.
      • Sobocki P.
      • Forsgren A.
      • Silfverdal S.A.
      Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model.
      SwedenHighSEK (2010)NRNoMarkovLifetime3SocietalPCV10 vs PCV13YesCUA (QALY)GSK
      Castañeda-Orjuela et al (2012)
      • Castañeda-Orjuela C.
      • Alvis-Guzmán N.
      • Velandia-González M.
      • De la Hoz-Restrepo F.
      Cost-effectiveness of pneumococcal conjugate vaccines of 7, 10, and 13 valences in Colombian children.
      ColombiaLMICUSD (2009)17 231YesMarkovLifetime3SocietalPCV13 vs PCV10

      PCV10 vs NoV
      NoCEA (YLG)Ministry health of Colombia
      Wu et al (2012)
      • Wu D.B.
      • Chang C.J.
      • Huang Y.C.
      • Wen Y.W.
      • Wu C.L.
      • Fann C.S.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine in Taiwan: a transmission dynamic modeling approach.
      TaiwanHighUSD (2009)43.359YesTransmission dynamic10 years3Societal, PayerPCV13 vs PCV10YesCEA (LYG)National Science Council
      Bakir et al (2012)
      • Bakır M.
      • Türel Ö.
      • Topachevskyi O.
      Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: a decision analytical model.
      TurkeyLMICUSDNRNRDecision analytic1 yearNRPayerPCV10 vs PCV13NoCUA (QALY)GSK
      Juus et al (2012)
      • Juus E.
      • Oona M.
      • Tamm E.
      • et al.
      Cost-effectiveness of pneumococcal vaccines in Estonia.
      EstoniaHighEUR (2011)35 754YesMarkov5 years5NRPCV10 vs NoV

      PCV13 vs NoV
      NRCUA (QALY)Ministry of Social Affairs, Estonia
      Knerer et al (2012)
      • Knerer G.
      • Ismaila A.
      • Pearce D.
      Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise.
      CanadaHighCAD (2007)NRNRMarkovLifetime3SocietalPCV10 vs PCV13YesCUA (QALY)GSK
      United KingdomHighGBP (2007)NRNRMarkovLifetime3.5PCV10 vs PCV13Yes
      Klok et al (2013)
      • Klok R.M.
      • Lindkvist R.M.
      • Ekelund M.
      • Farkouh R.A.
      • Strutton D.R.
      Cost-effectiveness of a 10- versus 13-valent pneumococcal conjugate vaccine in Denmark and Sweden.
      DenmarkHighDKK (2011)NRNRDecision analytic1 year3PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      SwedenHighSEK (2010)NRNR1 year3PCV13 vs PCV10
      Kulpeng et al (2013)
      • Kulpeng W.
      • Leelahavarong P.
      • Rattanavipapong W.
      • et al.
      Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context?.
      ThailandLMICThai Bhat (2010)100 000YesMarkovLifetime3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCUA (QALY)Thai Health Promotion Foundation
      Ayieko et al (2013)
      • Ayieko P.
      • Griffiths U.K.
      • Ndiritu M.
      • et al.
      Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children.
      KenyaLMICUSD (2010)775YesDecision analytic10 years3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCEA (DALY)GAVI Alliance
      Gomez et al (2013)
      • Gomez J.A.
      • Tirado J.C.
      • Navarro Rojas A.A.
      • Castrejon Alba M.M.
      • Topachevskyi O.
      Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru.
      PeruLMICUSD (2009)13 068YesMarkovLifetime3.5PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV10 vs PCV13
      NoCEA (LYG) and CUA

      (QALY)
      GSK
      Lee et al (2013)
      • Lee K.K.C.
      • Wu D.B.C.
      • Topachevskyi O.
      • Delgleize E.
      • DeAntonio R.
      The health economic impact of universal infant vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine as compared with 13-valent pneumococcal conjugate vaccine in Hong Kong.
      Hong KongHighHKD (2011)26 6023YesMarkov10 years5PayerPCV10 vs PCV13YesCUA (QALY)GSK
      Aljunid et al (2014)
      • Aljunid S.
      • Maimaiti N.
      • Ahmed Z.
      • et al.
      Economic impact of pneumococcal protein-D conjugate vaccine (PHiD-CV) on the Malaysian national immunization programme.
      MalaysiaLMICRM (2010)71 761YesMarkovLifetime5PayerPCV10 vs NoV

      PCV10 vs PCV13
      YesCUA (QALY)GSK
      Vemer and Postma (2014)
      • Vemer P.
      • Postma M.J.
      A few years later: update of the cost-effectiveness of infant pneumococcal vaccination in Dutch children.
      The NetherlandsHighEUR (2014)30 000NoDecision analytic5 years4SocietalPCV13 vs PCV10YesCUA (QALY)GSK
      Zhang et al (2014)
      • Zhang X.H.
      • Nievera M.C.
      • Carlos J.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination with the pneumococcal polysaccharide NTHi protein D conjugate vaccine in the Philippines.
      PhilippinesLMICPHP (2012)103 366YesMarkovLifetime5PayerPCV10 vs NoV

      PCV10 vs PCV13
      NoCUA (QALY)GSK
      Mezones-Holguín et al (2014)
      • Mezones-Holguín E.
      • Bolaños-Díaz R.
      • Fiestas V.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccines in preventing pneumonia in Peruvian children.
      PeruLMICUSD (2011)NRNRDecision analytic3 years3PayerPCV13 vs PCV10NoCEA (Avoided hospitalization)Ministry of Health
      Constenla (2015)
      • Constenla D.O.
      Post-introduction economic evaluation of pneumococcal conjugate vaccination in Ecuador, Honduras, and Paraguay.
      EcuadorLMICUSD (2014)19 131YesDecision analytic20 years3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCEA (DALY)John Hopkins
      HondurasLMICUSD (2014)6618YesPCV10 vs NoV

      PCV13 vs NoV
      ParaguayLMICUSD (2014)18 308YesPCV10 vs NoV

      PCV13 vs NoV
      Hasis et al (2015)
      • Haasis M.A.
      • Ceria J.A.
      • Kulpeng W.
      • Teerawattananon Y.
      • Alejandria M.
      Do pneumococcal conjugate vaccines represent good value for money in a lower-middle income country? A cost-utility analysis in the Philippines.
      PhilippinesLMICPHP (2013)120 000YesMarkovLifetime3.5PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV13 vs PCV10
      YesCUA (QALY)WHO
      Kieninger et al (2015)
      • Kieninger M.P.
      • Caballero E.G.
      • Sosa A.A.
      • et al.
      Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay.
      ParaguayLMICUSD (2009)7548YesTRIVAC10 years3Societal, payerPCV10 vs NoV

      PCV13 vs NoV

      PCV13 vs PCV10
      YesCEA (DALY)None
      Komakhidze et al (2015)
      • Komakhidze T.
      • Hoestlandt C.
      • Dolakidze T.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Georgia.
      GeorgiaLMICUSD (2012)3508YesTRIVAC10 years3PayerPCV10 vs NoVYesCEA (DALY)Bill & Melinda Gates foundation
      Mezones-Holguin et al (2015)
      • Mezones-Holguin E.
      • Canelo-Aybar C.
      • Clark A.D.
      • et al.
      Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru.
      PeruLMICUSD (2011)6009YesMarkovLifetime3.5PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV10 vs PCV13
      NoCEA (DALY)NIH, Peru
      Ordonez and Orozco (2015)
      • Ordóñez J.E.
      • Orozco J.J.
      Cost-effectiveness analysis of the available pneumococcal conjugated vaccines for children under five years in Colombia.
      ColombiaLMICUSD (2013)8025YesDecision analytic5 years3PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV10 vs PCV13
      YesCEA (LYG)Pfizer
      Shiragami et al (2015)
      • Shiragami M.
      • Mizukami A.
      • Leeuwenkamp O.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine and 13-valent pneumococcal vaccine in Japanese children.
      JapanHighJPY (2013)5 000 000YesMarkov5 years3Societal, payerPCV10 vs PCV13NoCUA (QALY)GSK
      Sibak et al (2015)
      • Sibak M.
      • Moussa I.
      • El-Tantawy N.
      • et al.
      Cost-effectiveness analysis of the introduction of the pneumococcal conjugate vaccine (PCV-13) in the Egyptian National Immunization Program, 2013.
      EgyptHighUSD (2013)9561YesMarkov5 years3payerPCV13 vs NoVYesCEA (DALY)Bill & Melinda Gates foundation
      Vučina et al (2015)
      • Vučina V.V.
      • Filipović S.K.
      • Kožnjak N.
      • et al.
      Cost-effectiveness of pneumococcal conjugate vaccination in Croatia.
      CroatiaHighUSD (2014)40 000YesMarkovNR3Societal, payerPCV10 vs PCV13YesCEA (DALY)None
      Delgleize et al (2016)
      • Delgleize E.
      • Leeuwenkamp O.
      • Theodorou E.
      • de Velde N.V.
      Cost-effectiveness analysis of routine pneumococcal vaccination in the UK: a comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model.
      United KingdomHighGBP (2014)20 000YesMarkovLifetime3.5PayerPCV10 vs PCV13YesCUA (QALY)GSK
      Gomez et al (2016)
      • Gómez J.A.
      • Villaseñor-Sierra A.
      • Aguilar G.M.
      • Manjarrez R.C.
      • Cervantes-Apolinar M.Y.
      Estimación de la relación costo-efectividad de las vacunas neumocócicas conjugadas prevenar-13 y Synflorix®, Utilizadas en Los Programas de Vacunación de Población Infantil Mexicana [Estimation of the cost-effectiveness relationship of the pneumococcal conjugate vaccines prevenar-13 and Synflorix®, Used in the Vaccination Programs of the Mexican Infant Population].
      MexicoLMICMXN (2013)147 034YesMarkovNR5SocietalPCV10 vs NoV

      PCV13 vs NoV

      PCV10 vs PCV13
      NRCEA (QALY)GSK
      Maurer et al (2016)
      • Maurer K.A.
      • Chen H.F.
      • Wagner A.L.
      • et al.
      Cost-effectiveness analysis of pneumococcal vaccination for infants in China.
      ChinaLMICUSD (2014)22 200YesMarkovLifetime3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCUA (QALY)University of Michigan
      Wu et al (2016)
      • Wu D.B.
      • Roberts C.
      • Lee V.W.
      • et al.
      Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong.
      MalaysiaLMICUSD (2014)9843YesMarkov10 years3Societal, payerPCV13 vs PCV10YesCUA (QALY)Pfizer
      Hong KongHighUSD (2014)110 099YesPCV13 vs PCV10
      Mo et al (2016)
      • Mo X.
      • Gai Tobe R.
      • Liu X.
      • Mori R.
      Cost-effectiveness and health benefits of pediatric 23-valent pneumococcal polysaccharide vaccine, 7-valent pneumococcal conjugate vaccine and forecasting 13-valent pneumococcal conjugate vaccine in China.
      ChinaLMICUSD (2014)22 455YesMarkov100 years3SocietalPCV13 vs NoVYesCUA (QALY)None
      Castiglia et al (2017)
      • Castiglia P.
      • Pradelli L.
      • Castagna S.
      • Freguglia V.
      • Palù G.
      • Esposito S.
      Overall effectiveness of pneumococcal conjugate vaccines: an economic analysis of PHiD-CV and PCV-13 in the immunization of infants in Italy.
      ItalyHighEuros (2014)50 000YesMarkov18 years3PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV13 vs PCV10
      YesCUA (QALY)GSK
      Gouveia et al (2017)
      • Gouveia M.
      • Fiorentino F.
      • Jesus G.
      • Costa J.
      • Borges M.
      Cost-effectiveness of the 13-valent pneumococcal conjugate vaccine in children in Portugal.
      PortugalHighEuros20 000YesMarkovLifetime5SocietalPCV13 vs NoVYesCEA (LYG)Pfizer
      Kuhlmann and von der Schulenburg (2017)
      • Kuhlmann A.
      • von der Schulenburg J.G.
      Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany.
      GermanyHighEuros (2013)20 000YesMarkov50 years3Societal, payerPCV13 vs PCV10YesCUA (QALY)None
      Sundaram et al (2017)
      • Sundaram N.
      • Chen C.
      • Yoong J.
      • et al.
      Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia.
      MongoliaLMICUSD (2014)4056YesDecision analytic30 years3Societal, payerPCV13 vs NoVYesCEA (DALY)WHO
      Wang et al (2017)
      • Wang X.J.
      • Saha A.
      • Zhang X.H.
      Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia.
      MalaysiaLMICUSD (2014)30 099YesMarkov10 years3PayerPCV10 vs NoV

      PCV10 vs PCV13
      NoCUA (QALY)GSK
      Saar et al (2017)
      • Saar I.
      • Posiuniene I.
      • Olbrecht J.
      • Simone B.
      • Leeuwenkamp O.
      • Van de Velde N.
      The cost-effectiveness of pneumococcal conjugate vaccination in a cohort of infants in Estonia.
      EstoniaHighEuro (2014)15 301YesMarkovLifetime5PayerPCV10 vs NoVYesCUA (QALY)GSK
      Castañeda-Orjuela and De la Hoz-Restrepo (2018)
      • Castañeda-Orjuela C.
      • De la Hoz-Restrepo F.
      How cost effective is switching universal vaccination from PCV10 to PCV13? A case study from a developing country.
      ColombiaLMICUSD (2014)6631YesMarkov76 years3PayerPCV13 vs NoVNoCEA (YLS)None
      Dorji et al (2018)
      • Dorji K.
      • Phuntsho S.
      • Pempa
      • et al.
      Towards the introduction of pneumococcal conjugate vaccines in Bhutan: a cost-utility analysis to determine the optimal policy option.
      BhutanLMICUSD (2017)2708YesMarkovLifetime3PayerPCV10 vs NoV

      PCV13 vs NoV

      PCV13 vs PCV10
      YesCUA (QALY)WHO
      Kupek and Viertel (2018)
      • Kupek E.
      • Viertel I.
      Postintroduction study of cost-effectiveness of pneumococcal vaccine PCV10 from public sector Payer’s perspective in the State of Santa Catarina, Brazil.
      BrazilLMICUSD (2011)34 156Yes--3PayerPCV10 vs NoVNoCEA (LYG)None
      Wasserman et al (2018)
      • Wasserman M.
      • Palacios M.G.
      • Grajales A.G.
      • et al.
      Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico.
      MexicoLMICMXN (2018)NRNoDecision analytic10 yearsNRPayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      Shen et al (2018)
      • Shen K.L.
      • Wasserman M.
      • Liu D.D.
      • et al.
      Estimating the cost-effectiveness of an infant 13-valent pneumococcal conjugate vaccine National Immunization Program in China.
      ChinaLMICCNY (2015)161 929YesDecision analytic1 year3PayerPCV13 vs NoVYesCUA (QALY)Pfizer
      Varghese et al (2018)
      • Varghese L.
      • Talbot L.
      • Govender A.
      • Zhang X.H.
      • Mungall B.A.
      A cost-effectiveness analysis of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the 13-valent pneumococcal conjugate vaccine (PCV13) for universal mass vaccination implementation in New Zealand.
      New ZealandHighNZD (2015)56 637YesMarkovLifetime3.5PayerPCV10 vs PCV13Considered bothCUA (QALY)GSK
      Wilson et al (2018)
      • Wilson M.
      • Wasserman M.
      • Jadavi T.
      • et al.
      Clinical and economic impact of a potential switch from 13-valent to 10-valent pneumococcal conjugate infant vaccination in Canada.
      CanadaHighCAD (2017)45 000YesDecision analytic10 years3PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      Zhou et al (2018)
      • Zhou H.
      • He J.
      • Wu B.
      • Che D.
      Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants.
      ChinaLMICUSD8382YesMarkovLifetime5Societal, payerPCV13 vs NoVConsidered bothCUA (QALY)Shanghai Health and Family Planning Commission
      Zhang et al (2018)
      • Zhang X.H.
      • Leeuwenkamp O.
      • Oh K.B.
      • Lee Y.E.
      • Kim C.M.
      Cost-effectiveness analysis of infant pneumococcal vaccination with PHiD-CV in Korea.
      KoreaHighUSD (2012)25 343YesMarkov10 years5PayerPCV10 vs PCV13NoCUA (QALY)GSK
      Dilokthornsakul et al (2019)
      • Dilokthornsakul P.
      • Kengkla K.
      • Saokaew S.
      • et al.
      An updated cost-effectiveness analysis of pneumococcal conjugate vaccine among children in Thailand.
      ThailandLMICThai Bhat (2018)160 000YesMarkovLifetime3SocietalPCV10 vs NoV

      PCV13 vs NoV
      NoCUA (QALY)Pfizer
      Kebede et al (2019)
      • Kebede T.T.
      • Svensson M.
      • Addissie A.
      • Trollfors B.
      • Andersson R.
      Cost-effectiveness of childhood pneumococcal vaccination program in Ethiopia: results from a quasi-experimental evaluation.
      EthiopiaLMICUSD (2013)505YesDecision analyticNR3SocietalPCV10 vs NoVNoCEA (DALY)Swedish Research Council
      Krishnamoorthy et al (2019)
      • Krishnamoorthy Y.
      • Eliyas S.K.
      • Nair N.P.
      • Sakthivel M.
      • Sarveswaran G.
      • Chinnakali P.
      Impact and cost effectiveness of pneumococcal conjugate vaccine in India.
      IndiaLMICUSD (2018)1939YesDecision analytic10 years3PayerPCV13 vs NoVNoCEA (DALY)None
      Ezoji et al (2019)
      • Ezoji K.
      • Yaghoubi M.
      • Nojomi M.
      • et al.
      Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic republic of Iran.
      IranLMICUSD (2014)4526YesTRIVACNR3Societal, payerPCV13 vs NoVYesCEA (DALY)Bill & Melinda Gates foundation
      Marijam et al (2019)
      • Marijam A.
      • Olbrecht J.
      • Ozakay A.
      • Eken V.
      • Meszaros K.
      Cost-effectiveness comparison of pneumococcal conjugate vaccines in Turkish children.
      TurkeyLMICEuro (2016)9730YesMarkov10 years3PayerPCV13 vs PCV10NoCUA (QALY)GSK
      Pugh et al (2019)
      • Pugh S.J.
      • Fletcher M.A.
      • Charos A.
      • Imekraz L.
      • Wasserman M.
      • Farkouh R.
      Cost-effectiveness of the pneumococcal conjugate vaccine (10- or 13-valent) versus no vaccination for a National Immunization Program in Tunisia or Algeria.
      AlgeriaLMICUSD (2016)NRYesDecision analytic1 year3PayerPCV10 vs NoV

      PCV13 vs NoV
      YesCUA (QALY)Pfizer
      TunisiaLMICUSD (2016)NRPCV10 vs NoV

      PCV13 vs NoV
      Ansaldi et al (2020)
      • Ansaldi F.
      • Pugh S.
      • Amicizia D.
      • et al.
      Estimating the clinical and economic impact of switching from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Italy.
      ItalyHighEuros (2017)31 953YesDecision analytic5 years3PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      Kim et al (2020)
      • Kim H.Y.
      • Park S.B.
      • Kang E.S.
      • Lee S.M.
      • Kim H.J.
      • Wasserman M.
      Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea.
      South KoreaHighUSD (2018)33 423YesDecision analytic5 years5NRPCV13 vs PCV10YesCUA (QALY)Pfizer
      Lu et al (2020)
      • Lu C.Y.
      • Chung C.H.
      • Huang L.M.
      • et al.
      Cost-effectiveness evaluation of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine for children in Taiwan [published correction appears in Cost Eff Resour Alloc. 2021;19(1):30].
      TaiwanHighNTD (2012)631 142YesMarkov10 years3PayerPCV10 vs PCV13NoCUA (QALY)GSK
      Perdrizet et al (2020)
      • Perdrizet J.
      • Santana C.F.S.
      • Senna T.
      • et al.
      Cost-effectiveness analysis of replacing the 10-valent pneumococcal conjugate vaccine (PCV10) with the 13-valent pneumococcal conjugate vaccine (PCV13) in Brazil infants.
      BrazilLMICUSD (2019)NRYesDecision analytic5 years5PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      Shafie et al (2020)
      • Shafie A.A.
      • Ahmad N.
      • Naidoo J.
      • et al.
      Estimating the population health and economic impacts of introducing a pneumococcal conjugate vaccine in Malaysia - an economic evaluation.
      MalaysiaLMICUSD (2018)NRNRDecision analytic3 years5SocietalPCV13 vs NoV

      PCV13 vs PCV10
      YesCUA (QALY)Pfizer
      Pugh et al (2020)
      • Pugh S.
      • Wasserman M.
      • Moffatt M.
      • et al.
      Estimating the impact of switching from a lower to higher valent Pneumococcal Conjugate Vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis.
      ColumbiaLMICUSD (2016)5870YesDecision analytic5 years3.5PayerPCV13 vs PCV10YesCUA (QALY)Pfizer
      FinlandHighEuros (2016)39 6423PCV13 vs PCV10
      The NetherlandsHighEuros (2016)34 0544PCV13 vs PCV10
      Pecenka et al (2021)
      • Pecenka C.
      • Usuf E.
      • Hossain I.
      • et al.
      Pneumococcal conjugate vaccination in the Gambia: health impact, cost effectiveness and budget implications.